Modelling of Gasification of Refuse-derived fuel (RDF) based on laboratory experiments

Juma Haydary
Department of Chemical and Biochemical Engineering
Institute of Chemical and Environmental Engineering
Faculty of Chemical and Food Technology
Slovak University of Technology in Bratislava, Slovakia
Slovak University of Technology in Bratislava

Faculty of Chemical and Food Technology

Cyprus 2016
Institute of Chemical and Environmental Engineering

Reactor Engineering Research Group

- Experimental study and mathematical modeling of fuel thermal processes
- Pyrolysis, gasification and combustion of solid fuels
- Biomass, polymer waste, MSW, and coal thermal and catalytic processing for production energy and materials

National center for research and application of renewable energy sources
Refuse-Derived Fuel (RDF)

MSW

Biodegradables
Metals
Inorganics
Hazardous wastes

RDF
RDF composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
<th>w_i [kg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>White paper, recycled paper</td>
<td>0.6317</td>
</tr>
<tr>
<td>Foil</td>
<td>LDPE, HDPE</td>
<td>0.1578</td>
</tr>
<tr>
<td>Plastics</td>
<td>Rigid plastics, polystyrene, polyurethane</td>
<td>0.1910</td>
</tr>
<tr>
<td>Textile</td>
<td>Polyamide, polyester, cotton, wool</td>
<td>0.0194</td>
</tr>
</tbody>
</table>
Proximate and Elemental Composition of RDF

<table>
<thead>
<tr>
<th>Com.</th>
<th>Mois.</th>
<th>VM*</th>
<th>FC*</th>
<th>ASH*</th>
<th>C</th>
<th>H</th>
<th>N</th>
<th>S</th>
<th>O**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt. %</td>
<td>10</td>
<td>75.5</td>
<td>8.9</td>
<td>15.6</td>
<td>51.7</td>
<td>5.9</td>
<td>0.9</td>
<td>0.4</td>
<td>25.5</td>
</tr>
</tbody>
</table>

*moisture free basis
**calculated to 100%
Behaviour of Thermal decomposition

![Graph showing the behaviour of thermal decomposition over time and temperature for different materials.]

- Recycled paper
- White paper
- Rigid plastic
- Foil
- Polystyrene
- Textile
- Polyurethane
- RDF
- Temperature

Time (min)

Mass loss (%)
Behaviour of Thermal decomposition

![Graph showing thermal decomposition behavior with TG, DSC, and temperature over time.](image-url)
Heating value of RDF

<table>
<thead>
<tr>
<th>Component</th>
<th>Heating value [kJ/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>13410</td>
</tr>
<tr>
<td>Foil</td>
<td>43860</td>
</tr>
<tr>
<td>Plastics</td>
<td>33570</td>
</tr>
<tr>
<td>Textile</td>
<td>19770</td>
</tr>
<tr>
<td>Mixed RDF</td>
<td>20810</td>
</tr>
</tbody>
</table>
Tar content measurement

- Reactor
- Condensers
- GC
- Air
- Flow measurement

Graph showing the relationship between Tar content (mg/g RDF) and Temperature (°C):

- Tar content decreases as Temperature increases.
- The graph shows a clear downward trend from 90 to 20 mg/g RDF as the Temperature goes from 1200 to 600 °C.

In the diagram, there are test tubes labeled as Glass particles and izopropanol.
Gasification Model

Assumptions:
• Steady state flow is considered inside the gasifier
• No temperature and concentration gradient exist inside the reactor
• The residence time is enough long to reach complete decomposition of RDF and unreacted part of RDF is only carbon.
• Only the major species are considered in the product gases, i.e CO, CO$_2$, H$_2$, CH$_4$, H$_2$O, NH$_3$, H$_2$S, N$_2$ and Tar

Global material balance of RDF gasification

\[CH_b O_c N_d S_e + x_1 O_2 + x_2 H_2 O \rightarrow x_3 CO + x_4 CO_2 + x_5 H_2 + x_6 CH_4 + x_7 H_2 O + x_8 NH_3 + x_9 H_2 S + x_{10} CH _{b1} O_{c1} N_{d1} S_{e1} \]

Reactions:

\[
\begin{align*}
C + 0.5 O_2 & \rightarrow CO \\
CO + 0.5 O_2 & \rightarrow CO_2 \\
H_2 + 0.5 O_2 & \rightarrow H_2 O \\
CH_4 + 2 O_2 & \rightarrow CO_2 + 2 H_2 O \\
C + H_2 O & \leftrightarrow H_2 + CO \\
C + CO_2 & \leftrightarrow 2 CO \\
CH_4 + H_2 O & \leftrightarrow 3 H_2 + CO \\
C + 2 H_2 & \rightarrow CH_4 \\
CO + H_2 O & \leftrightarrow CO_2 + H_2
\end{align*}
\]

Equilibrium constant:

\[
K_a = \left(\frac{P}{P_0} \right) ^ {\sum \nu_i} \prod \phi_i^{\nu_i} \prod x_i^{\nu_i}
\]

\[
k_{298}^a = e^{- \frac{\Delta_r G_{298}^{298}}{RT}}, \quad \Delta_r G_{298}^{298} = \Delta_r H_{298} - T \Delta_r S_{298}
\]

\[
\Delta_r H_{298} = \sum \nu_i \Delta_f H_i^{298} \quad \Delta_r S_{298} = \sum \nu_i \Delta_f S_i^{298}
\]

\[
\Delta_r H = \Delta_r H_{298} + \sum \nu_i c_{pi} \cdot (T - 298) \quad \Delta_r S = \Delta_r S_{298} + \sum \nu_i c_{pi} \cdot \ln \frac{T}{298}
\]
Enthalpy balance:

\[H_{RDF} + H_{O2\text{air}} + H_{\text{steam}} + Q_R = H_{\text{gas}} + H_{\text{ash}} + H_C + Q_{\text{loss}} \]

\[Q_R = m_{RDF} \sum w_i Q_i - \sum (-\Delta_c H_i) n_i \]

\[T = T_{\text{ref}} + \frac{m_{RDF} \sum w_i Q_i - \left(\sum (-\Delta_c H_i) n_i \right) - Q_{\text{loss}}}{\left(\sum n_i c_{pi} \right) + m_c \overline{c}_{pC} + m_{\text{ash}} \overline{c}_{pash} - m_{\text{steam}} \overline{c}_{steam}} \]

- \(Q_s \) – heat of reaction [J],
- \(H_{RDF} \) – enthalpy of RDF feed [J],
- \(H_{O2\text{air}} \) – enthalpy of oxygen and air respectively [J],
- \(H_{\text{steam}} \) – enthalpy of water steam [J],
- \(H_{\text{gas}} \) – enthalpy of gas [J],
- \(H_{\text{ash}} \) – enthalpy of ash [J],
- \(H_C \) – enthalpy of unreacted carbon [J],
- \(Q_{\text{loss}} \) – heat losses from the reactor [J]

- \(m_{RDF} \) – mass flow of RDF feed [kg]
- \(n_i \) – mole flow of component i in the products [kmol]
- \(w_i \) – mass fraction of component i in the feed (paper, foil, plastics, textile)
- \(Q_i \) – lower heating value of component i in the feed (paper, foil, plastics, textile) [Jkg\(^{-1}\)],
- \(\Delta_c H_i \) - heat of combustion of component i in the products [Jkmol\(^{-1}\)]

- \(m_{\text{ash}} \) – mass flow of ash [kg]
- \(m_{\text{ash}} \) – mass flow of remaining carbon [kg]
- \(m_{\text{steam}} \) – mass flow of steam [kg]
- \(\tau_{pash} \) – specific heat capacity of ash [Jkg\(^{-1}\)K\(^{-1}\)]
- \(\tau_{pC} \) – specific heat capacity of remaining carbon [Jkg\(^{-1}\)K\(^{-1}\)]
- \(\tau_{psteam} \) – specific heat capacity of steam [Jkg-1K\(^{-1}\)]
Results of modelling RDF gasification

Observed parameters:
- Conversion of RDF
- Reactor Temperature
- Gas composition
- Content of pollutants (NH3, H2S, TAR)

Variables:
- Oxygen (air) to RDF mass ratio
- Steam to RDF mass ratio
Air Gasification

Mole fraction

Temperature (°C)

Conversion (%)

m(air)/m(RDF)

H2
CO
CH4
CO2
N2

Air Gasification

Mole fraction

Temperature (°C)

Conversion (%)

m(air)/m(RDF)

H2
CO
CH4
CO2
N2

Air Gasification

Mole fraction

Temperature (°C)

Conversion (%)

m(air)/m(RDF)

H2
CO
CH4
CO2
N2
H2S and NH3 mole fraction

Tar mass fraction

$m(\text{air})/m(\text{RDF})$
Gasification of RDF Using O_2

Graph showing mole fraction of gases such as H_2, CO, CH_4, CO_2, and N_2 against $m(O2)/m(RDF)$.

Graph showing temperature in Kelvin and conversion against $m(O2)/m(RDF)$.

Gasification of RDF Using O_2

Graph showing mole fraction of gases such as H_2, CO, CH_4, CO_2, and N_2 against $m(O2)/m(RDF)$.

Graph showing temperature in Kelvin and conversion against $m(O2)/m(RDF)$.
Effect of RDF composition

<table>
<thead>
<tr>
<th>Com. Wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mois</td>
</tr>
<tr>
<td>VM</td>
</tr>
<tr>
<td>FC</td>
</tr>
<tr>
<td>ASH</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>O</td>
</tr>
</tbody>
</table>

Table 1: RDF Composition

<table>
<thead>
<tr>
<th>Com. Wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mois</td>
</tr>
<tr>
<td>VM</td>
</tr>
<tr>
<td>FC</td>
</tr>
<tr>
<td>ASH</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>O</td>
</tr>
</tbody>
</table>
Effect of Steam in RDF Gasification

- Mole fraction vs. m(Steam)/m(RDF)
 - H2
 - CO
 - CO2

- Temperature (K) vs. m(Steam)/m(RDF)
 - Temperature
 - Heating value

- Heating Value (MJ/kg) vs. m(Steam)/m(RDF)
Conclusion

- For RDF studied in this work, 100% of RDF conversion in gasification by air was reached at $\text{m}_{\text{air}}/\text{m}_{\text{RDF}}=2.2$. However, the gas heating value was 4.4 MJ/Nm3

- Gasification of RDF using Oxygen enables production of a gas with heating value around 10 MJ/Nm3 at $\text{m}_{\text{O2}}/\text{m}_{\text{RDF}}=0.45$

- Elemental Composition of RDF has a crucial effect on required $\text{m}_{\text{air}}/\text{m}_{\text{RDF}}$

- Raw untreated gas tar content was 3.3 mass %; tar fraction content a solid phase insoluble in isopropanol

- By increasing the $\text{m}_{\text{steam}}/\text{m}_{\text{RDF}}$ the content of H2 and CO$_2$ increased, However, the content of CO, reactor temperature and gas heating value decreased
Thank you for attention