

Development of composite and hybrid materials from gasification biochar and clay

P.M. NIGAY¹, C. WHITE ², W. SOBOYEJO ³, A. NZIHOU ¹

¹ Mines Albi, RAPSODEE Research Center, CNRS, France

² Princeton University, Civil and Environmental Engineering, USA

³ Princeton University, Mechanical and Aerospace Engineering, USA

I. Introduction

II. Biochar

III. Clay

IV. Applications

I. Introduction

Widespread utilization of Carbonaceous and Clay materials

- ✓ Carbonaceous materials including carbon black, carbon fibers, carbon nanotubes (CNTs) and graphenes are of great interest
- ✓ Carbonaceous materials can derive from renewable resources such as Biomass and Biogenic waste
- ✓ New momentum for clay energy based materials, clay bricks, clay geopolymer mortars, clay sorbents, clay biopolymer fillers
- ✓ Raw natural clay from deposite sites or processed by chemical/thermal/mechanical treatment with additives
- ✓ Engineered biochars / clays composites for various applications

Hybrid: mixture of two or more materials to obtain a material with new properties **Composite**: mixture of carbon materials with inorganic or organic matter to produce a new material with structural and functional properties

I. Introduction

II. Biochar

III. Clay

IV. Applications

II. Biochar - Biochar production

BIOGREEN® introduction

Thermochemical conversion - range of applications

Drying

A dehydration with the release of light hydrocarbons

Torrefaction

a mild form of pyrolysis dedicated only for biomass conversion. Torrefaction leads to obtaining dry product with higher energy content. Main product is biocoal - yield between 70 and 80%

BIOCOAL

MT pyrolysis

enables chemical conversion of products like biomass, plastic, or rubber into a solid, liquid or gas phase. Enables valorization to biooil and biochar. Yield of biooil ranges from 30 to 60%.

Yield of biochar 25 to 35%

BIOOIL, BIOCHAR

HT pyrolysis & gasification

conversion most of the feedstock into methane-rich syngas which can be valorized into energy by using it CHP unit or steam boiler. Yield of syngas ranges from 50 and 95%

CO+H₂

Biochar is biomass dependant!

Wood sawdust

Crop residue

Green waste

Energy Fuel cells photovoltaic Supercapacitors

II. Biochars

Environment
Carbon sequestration
CO₂ Storage
Sensors

Chemistry
Catalyst
Adsorbent
Water treatment

Reinforcing materials in polymer composites. Biocomposites

Other uses
Biomedical use Pharmaceutical
Gas storage

II. Biochar

Structure

Structure of chars vs temperatures towards graphitic structures

Carbonaceous matrix:

Aromatic units /

O within heterocyclic and phenolic group / Aromatic units cross-linked by ether and olefine

Van Krevelen plot for biochar

Various material forms within the black carbon defined by the range in the oxygen to carbon (O/C) ratio :

Biochar stability

II. Biochar

Carbon structure of the raw biochar

- Raw biochar **complex carbon** containing:
- Ordered structures
- Disordered structures

- turbostratic carbon:
- Diffuse SAED
- No organization of the graphene layers

I. Introduction

II. Biochar

III. Clay

IV. Applications

III. Clay

Stability and structure

Stacking of alumina and silica sheets

Dehydroxylation of clay minerals at 500°C:

$$KAl_3Si_3O_{10}(OH)_2 \rightarrow KAl_3Si_3O_{11} + H_2O$$

Degradation of calcium carbonates at 700°C:

$$CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2$$

Combination as stable silicates up to 1200°C

I. Introduction

II. Biochar

III. Clay

IV. Applications

IV. Applications

Control of the porosity rate and morphology of the composites

Release of H₂O and CO₂

Control of the porosity rate and morphology of the composites

cars

IV. Applications

Clay-Biochar composites

- Filters for effluents treatment
- Sensors for pollutants removal

Sensors

Collection of Cadmium into the composite^[*]

IV. Applications – Energy storage

Intermittent nature of the renewable energy sources

Exclusive production of energy with sun or wind ...

Grading of the excess by means of a storage

Storage by sensible heat (Q) of materials

$$Q=m.c_p.\Delta T$$

Require materials with a high thermal capacity (c_p)

Addition of organics and firing under inert atmosphere (N₂)

Conservation of organics with a high c_p in inorganic structure

IV. Applications

Clay-Biochar composites

Materials for energy storage

Improvement of thermal capacity with biochar addition of 15% Easy production and handling in comparison to rivals (molten salts)

1,6

| Ceramics | Concrete | Clay/Biochar | Molten Salts | O,8 - O,6 - O,0 | O,0 |

[*] Thermal properties of the materials fired to 950°C using hot disk method at 300°C

I. Introduction

II. Biochar

III. Clay

IV. Applications

V. Conclusions

Advantages using carbon additives

- ✓ Improvement of the reactivity
- ✓ Increase of the functionnality

Motivation for further studies

Production of advanced composites from biochar and clay:

- ✓ Sensors
- ✓ Catalysts
- ✓ Materials for insulation
- ✓ Materials for energy storage
- ✓ Soil amendement

Wide range of possibilities for biochar / clay composites

ACKNOWLEDGMENTS

My group:

Thank you for your attention!

Contact:

ange.nzihou@mines-albi.fr

