Environmental impacts of different options for the management of livestock waste in Cyprus

LIFE LIVE-WASTE

Lucía Lijó Batalla
Sara González García
Gumersindo Feijoo Costa
María Teresa Moreira Vilar
• The estimated total livestock heads in Cyprus in 2011 were more than 4,400,000; which would mean that around 1,850,000 tons of manure.

• Cyprus faces water shortage problems ⇒ seasonal rainfall disparity, seawater penetration into the island’s water table and lack of natural water retention areas.

• Cyprus has few indigenous energy sources ⇒ its power system depends on imported oil.
<table>
<thead>
<tr>
<th>Number of animals</th>
<th>Manure production factor</th>
<th>Total manure production</th>
<th>Direct application</th>
<th>Anaerobic lagoons</th>
<th>Anaerobic digestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(head)</td>
<td>(t/head·year)</td>
<td>(t/year)</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Cattle</td>
<td>55,975</td>
<td>10.8</td>
<td>604,530</td>
<td>93%</td>
<td>7%</td>
</tr>
<tr>
<td>Pigs</td>
<td>437,420</td>
<td>1.89</td>
<td>826,724</td>
<td>70%</td>
<td>30%</td>
</tr>
<tr>
<td>Sheep</td>
<td>255,540</td>
<td>0.64</td>
<td>163,546</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>Goats</td>
<td>214,720</td>
<td>0.64</td>
<td>137,421</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>Poultry</td>
<td>3,440,000</td>
<td>0.034</td>
<td>116,960</td>
<td>89%</td>
<td>11%</td>
</tr>
</tbody>
</table>
Objective: Comparison of the environmental profile of different options for the management of livestock waste in Cyprus

Materials and methods

Goal and scope definition

Inventory data collection

Interpretation

Impact assessment

<table>
<thead>
<tr>
<th>Environmental results</th>
<th>Impact categories</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td></td>
<td>10</td>
<td>60</td>
<td>-1</td>
</tr>
<tr>
<td>Acidification</td>
<td></td>
<td>5</td>
<td>15</td>
<td>-5</td>
</tr>
<tr>
<td>Eutrophication</td>
<td></td>
<td>0.8</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Inputs from technosphere

- Electricity: 1000 kWh
- Chemicals: 50 kg

Outputs to Environment

- CH₄: 60 kg
- N₂O: 0.1 kg

Conclusions

Recommendations

Improvement options

Raw materials, fossil fuels and water

Emissions to air, water and soil

Identification of environmental hotspots

Environmental credits ➔ resources recovery
Materials and methods

Scenario 1

Animal waste production → Anaerobic lagoon

Scenario 2

Animal waste production → Solid/liquid separation → Anaerobic lagoon → Solid storage → Land application

Avoided mineral fertilisation

Life
Scenario 3

Animal waste production → Storage → Transport → Land application → Avoided mineral fertilisation

Scenario 4

Animal waste production → AD → Storage → Bioenergy production → Electricity → Avoided electricity production

Life

LIVEWASTE
Materials and methods

Scenario 5 – LiveWaste project

Animal waste production

Anaerobic digestion

BTF

Solid/liquid separation

BF + AC

Biogas upgrading

Struvite reactor

SBR

Compost unit

Effluent reuse

Land application

Avoided natural gas use

Avoided water use & mineral fertilisation

Avoided peat use & mineral fertilisation

Natural gas grid

Avoided water use & mineral fertilisation
Materials and methods

Functional unit:

1 ton of livestock waste treated

System boundaries:

- Production of inputs and energy: electricity, transport, infrastructure and chemicals.
- Direct emissions: transport, CHP, storage, land application.
- Environmental credits: electricity production and manure and digestate applied on land can replace electricity from fossil fuels and mineral fertilisers.
Materials and methods

ReCiPe Midpoint Methodology

Characterisation results
- Climate change (CC)
- Ozone depletion (OD)
- Photochemical oxidant formation (POF)
- Fossil depletion (FD)
- Water depletion (WD)
- Terrestrial acidification (TA)
- Freshwater eutrophication (FE)
- Marine eutrophication (ME)
Comparative results - characterisation

Climate change

- **Scenario 1**: 500 kg CO$_2$ eq/FU
- **Scenario 2**: 200 kg CO$_2$ eq/FU
- **Scenario 3**: 100 kg CO$_2$ eq/FU
- **Scenario 4**: 50 kg CO$_2$ eq/FU
- **Scenario 5**: 0 kg CO$_2$ eq/FU

Ozone depletion

- **Scenario 1**: -2.0E-06 kg CFC-11 eq/FU
- **Scenario 2**: 0 kg CFC-11 eq/FU
- **Scenario 3**: 2.0E-06 kg CFC-11 eq/FU
- **Scenario 4**: 8.0E-06 kg CFC-11 eq/FU
- **Scenario 5**: 6.0E-06 kg CFC-11 eq/FU

Photochemical oxidant formation

- **Scenario 1**: 0.20 kg NMVOC/FU
- **Scenario 2**: 0.10 kg NMVOC/FU
- **Scenario 3**: 0.00 kg NMVOC/FU
- **Scenario 4**: 0.10 kg NMVOC/FU
- **Scenario 5**: 0.20 kg NMVOC/FU

Fossil depletion

- **Scenario 1**: -10 kg oil eq/FU
- **Scenario 2**: -5 kg oil eq/FU
- **Scenario 3**: 0 kg oil eq/FU
- **Scenario 4**: 5 kg oil eq/FU
- **Scenario 5**: 10 kg oil eq/FU

Life program and *LIVEWASTE*.
Comparative results - characterisation

Water depletion

- Scenario 1: 0 kg m3/FU
- Scenario 2: -0.05 kg m3/FU
- Scenario 3: -0.1 kg m3/FU
- Scenario 4: -0.15 kg m3/FU
- Scenario 5: -0.2 kg m3/FU

Terrestrial acidification

- Scenario 1: 0.5 kg SO$_2$ eq/FU
- Scenario 2: 1 kg SO$_2$ eq/FU
- Scenario 3: 1.5 kg SO$_2$ eq/FU
- Scenario 4: 2 kg SO$_2$ eq/FU
- Scenario 5: 3 kg SO$_2$ eq/FU

Freshwater eutrophication

- Scenario 1: 0.5 kg P eq/FU
- Scenario 2: 0.2 kg P eq/FU
- Scenario 3: 0 kg P eq/FU
- Scenario 4: 0 kg P eq/FU
- Scenario 5: -0.1 kg P eq/FU

Marine eutrophication

- Scenario 1: 0.8 kg N eq/FU
- Scenario 2: 0.6 kg N eq/FU
- Scenario 3: 0.4 kg N eq/FU
- Scenario 4: 0.2 kg N eq/FU
- Scenario 5: 0 kg N eq/FU
Comparative results – normalisation

- **Scenario 1**: 1.48
- **Scenario 2**: 0.68
- **Scenario 3**: 0.12
- **Scenario 4**: 0.09
- **Scenario 5**: 0.03
Production of **valuable products** (bioenergy and organic fertilisers) helps to offset environmental burdens \(\rightarrow\) replacement of potentially polluting processes.

- **Anaerobic lagoons** are a source of pollutants. In addition, this waste disposal process does not produce any valuable product.

- **Direct application** achieved intermediate results since a fraction of the nutrients present in the manure are uptaken by the plants and thus avoiding mineral fertilisers.

- **Biogas plant** exhibited the best environmental results in terms of energy-related categories since it avoids the production of electricity. However, environmental burdens were identified in TA due to the large content of ammonium in the digestate.

- **LiveWaste system** attained the best global environmental results since it reduces pollution and produces several valuable products from the gas, liquid and solid streams.
Environmental impacts of different options for the management of livestock waste in Cyprus

LIFE LIVE-WASTE

Lucía Lijó Batalla
Sara González García
Gumersindo Feijoo Costa
María Teresa Moreira Vilar