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Introduction

New alternatives
to produce
valuable
chemicals and
fuels

Oil crude

Energy demand
has generated a
renewed interest
in producing
fuels from
biomass
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Introduction
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Lignocellulosic
biomass

Cellulose
Hemicellulose
Lignin

v Availability
v Relatively low
cost




W. Shen et al. (2011) reported that jet fuels range alkanes could be obtained from
lignocellulosic biomass by a novel route, wherein C5 sugar was firstly produced by hydrolysis
of biomass and then converted into furfural.
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Figure 1 Sequence of hydrolysis, dehydration and aldol-condensation reactions to produce
precursor jet fuel from lignocellulosic biomass.
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Component

Cellulose

Hemicellulose
Lignin
Ash

Extractives

Table 1 Composition of the lignocellulosic biomass used in this work (% wt dry basis).

Slgiz:size Coffee cut-stems b;g:sese
46.74 40.39 50.79
23.62 34.01 14.19
91 10.13 12.47
1.13 1.27 21.84
8.79 14.18 0.69
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Figure 2 Flowsheet for process to obtain jet fuel precursor.
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Dilute-acid pretreatment Dehydration reaction

110°C, 1:10 (%wt) solid:liquid 90°C,1.5h, 500rpm, 2.4g NaCl
) O, solution (2 %v/v), 5h. 1) H,SO, solution (2 %v/v)
i) HsSO, solution (10% v/v), 30min. i) H,SO, solution (10% v/v)

@ Aldol-condensation reaction
120°C, 7-10atm, 24h,
40mg MgO-ZrO,
1) 55 wt. % total organics,
furfural/acetone= 1 by moles,
methanol/water= 1.85 by volume
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Sugars and furan-based compounds
determination

and furan-based compounds
during the acid hydrolysis, dehydration
and aldol-condensation reactions are
uantified by the HPLC system (ELITE
LaChrom) using an ORH-801
Transgenomic® column.

Alkane precursor determination

Alkane precursor (4-(2-furyl)-3-buten-2-
one) identification is made with a gas
chromatograph (Agilent Technologies
6850 Series Il) equipped with a mass
selective detector (MSD 5975B).
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Table 2 Results of the acid hydrolysis.

_ Condition 1 Condition 2
pev ma/terlal g xylose/g hem g furfural/g hem g xylose/g hem g furfural/g hem
SCB/ 0.81+0.004 0.054+0.001 0.60+0.016 0.076+0.003
C}?é 0.50+0.030 0.024+0.002 0.51+0.010 0.023+0.002
i/B 0.58+0.017 0.019+0.003 0.54+0.025 0.017+0.001

hem: hemicellulose

Xylose and furfural are the interesting products and a platform to obtain the precursor of
jet fuels.
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Table 3 Results of dehydration reaction.

Raw material | Condition 1 (g furfural/g xylose) | Condition 2 (g furfural/g xylose)

SCB/,, 0.060+0.008 0.060+0.005
(;Z,/S 0.063+0.002 0.067+0.005
/FB 0.092+0.009 0.045+0.005

Rong et al. (2012) reported that xylose dehydration to furfural has a yield below
10% when acid concentration is nearly to 2.5% w/w. On the other hand, the yield
reduces to 0.51% when the concentration of sulfuric acid reaches 12.5% w/w|[10].
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Table 4 Results of aldol-condensation reaction.

condition 1 Final FA (4-(2-furyl)-

R : 3-buten-2- ield
v (% disappearance fien-2-one)hs

a=nal of furfural) (g/g.of
hemicellulose)

'scB 71.7+£0.018 0.14+ 0.004

CCS 96.5+0.014 0.12+ 0.004

FB 92.9+0.008 0.08+ 0.002

The data reported in literature
indicate a disappearance
percentage of 66% in the
same conditions of the
procedure developed in this
work [12].

When aldol-condensation
reaction is carried out for
operation condition 2, the
formation of interest products is
not recorded for any raw
material.
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According to results from the technical assessment, SCB, CCS and
FB have relative high FA (4-(2-furyl)-3-buten-2-one) yields 0.14, 0.13
and 0.08 grams of precursor per gram of lignocellulosic biomass,
respectively. The good content of hemicellulose in these residues,
the efficiency in acid hydrolysis and dehydration stages, involve
good flows of product.

The production cost is 6.02, 5.57 and 10.22 USD per kilogram of
precursor for SCB, CCS and FB, respectively. In this sense, the
economic margins are -20.45, -11.41 and -104.34% for SCB, CCS and
FB, respectively.
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ECONOMIC RESULTS
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Figure 3 Total costs distribution for SCB, CCS and
FB to produce jet fuel precursor.

The utilities cost represents
approximately more than 50%
of total production cost which

s related with the great
amount of energy that
demands the aldol-
condensation reaction to
generate the FA. As can be
seen there are not significant
changes in the percentages
of distribution between the
residues.

Research Group in Chemical, Catalytic and Biotechnological Processes



ENVIRONMENTAL RESULTS SCB is the process
00 | . | with greater flow of

5ics oS D FA and released
100 energy that can be
exploited,
20,0 consequently is the
friendliest
300 | environmental
process.
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Figure 4 Environmental results for SCB, CCS and

FB to produce jet fuel precursor.
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This work contributes to the implementation of simultaneous
processes for the transformation of agroindustrial wastes to
obtain sugars, furan-based compounds and precursor of
liquid alkane range jet biofuel, focusing on the
comprehensive utilization of raw materials.

Additionally, this work shows that MgO-ZrO,, catalyst allows
converting carbohydrate-derived compounds, like furfural, to
water-soluble intermediates (precursor FA). These compounds
are the base for future production of liquid alkanes.
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