

Long term stabilization of Sb in MSWI bottom ash

Bram Verbinnen
Jo Van Caneghem, Pieter Billen, Carlo Vandecasteele

KU Leuven, Belgium

Cyprus 2016 conference, 23/06/2016

MSWI Bottom Ash

MSWI Bottom Ash

- Each application: specific chemical barrier
- Most barriers can be overcome!

- Some problems remain, or more strict legislation
- Netherlands: Green Deal
 - By 2017: 50% of BA in applications without protective measures
 - By 2020: No more use in applications with protective measures
 - Enhanced recovery of NF metals
 - Most problematic: leaching of Sb

Sb leaching

Sb leaching known to be governed by:

- Formation of calcium antimonates (romeites)¹
- Adsorption to iron (hydr)oxides
- Formation of iron antimonate (tripuhyite, FeSbO₄)²
- (Incorporation in ettringite)
- o All pH dependent!

Reduce Sb leaching

- Based on these mechanisms: addition of
 - Fe- and Ca- salts
 - Industrial waste streams containing Fe- and Ca-salts
- Experimental
 - Short term leaching behavior
 - Lab batch tests
 - Middle-long term leaching behavior
 - Outdoor field tests
 - Long term leaching behavior
 - Lab carbonation tests

Short term leaching behavior

- pH dependent leaching behavior
- Addition of:

Fe- and Ca-containing compounds

Fe- and Ca-containing industrial residues (10%)

Short term leaching behavior

- Additives:
 - Ca-compounds
 - CaO, CaCl₂: formation and precipitation of romeites
 - CaCO₃: less soluble, no precipitation
 - Fe-compounds
 - Formation of tripulyite
 - Industrial residues
 - Formation of Ca-antimonates (A2, A3: soluble Ca-compounds)
 - No adsorption on iron oxides (A1: no soluble Ca-compounds, iron oxides)

Middle-long term leaching behavior

Outdoor field tests

- Sb concentrations initially decreased
 - Lower than untreated BA & regulatory limit value
- Increase slightly over time as pH decreases
 - Romeites become more soluble at lower pH values

Long term leaching behavior

- Carbonation
 - BA: decreasing
 - \circ Fe₂(SO₄)₃: initially lower, increasing

Long term leaching behavior

- Carbonation
 - A2: initially lower, increasing, below limit value
 - A3: initially lower, increasing, around limit value

Long term leaching behavior

- Sb leaching from treated BA increasing after carbonation
 - Romeites more soluble at lower pH¹

- Sb leaching from untreated BA decreases after carbonation
 - Can not be explained by 4 mechanisms

Additional tests

- Explain Sb leaching from untreated BA after carbonation
- Leaching behavior similar to Cu leaching

- Sb leaching also influenced by organic acids?
 - Sb known to form complexes with organic acids³
 - Heat treatment (400°C, 30 min)
 - Addition of activated carbon

Additional tests

Leaching behavior after heat treatment and AC addition

- Behavior similar to Cu
 - AC addition: adsorption of complexes on AC
 - Heat treatment: decarboxylation of organic acids
 - Carbonation: adsorption of organo-metallic complexes⁴?

Conclusions

- Sb leaching from MSWI BA can be reduced by addition of chemical compounds and Ca- and Fe-containing industrial residues
- Effect of addition endures in middle-long and long term leaching experiments
- More insight is gained in mechanisms governing Sb leaching from MSWI BA:
 - Plausible that organic matter plays a role
 - Influence needs to be further investigated

CAMPUS GROUP T LEUVEN

Thank you!

Bram.verbinnen@kuleuven.be

