Material Distribution in Treated MSWI Bottom Ash Fractions

P.M.F. van de Wouw
M.V.A. Florea
H.J.H. Brouwers
Content

• Introduction
 – Municipal Solid Waste Incineration Bottom Ashes (MSWI BA)
 – Dutch legislation

• Methodology

• Results

• Conclusion
Municipal Solid Waste Incineration (MSWI)

- Volume reduction: 90%
- Mass reduction: 70%

Bottom Ashes (BA)
- 80 mass %

Fly Ashes
- 20 mass %

Chimenos et al, 1999
Municipal Solid Waste Incineration Bottom Ash (MSWI BA)

- After pre-treatment
- Problematic contaminants (Soil Quality Decree)
 - Aluminum
 - Barium
 - Copper
 - Molybdenum
 - Chlorides
 - Sulphates
Dutch building material legislation

- **Shaped**
 - $> 50 \text{ cm}^3$
 - Virtually no erosion or wear

- **Unshaped**
 - $< 50 \text{ cm}^3$
 - Not sustainable rigid
 - Limited emission to the environment

- **Isolated, controlled & monitored materials**
 - Unshaped building materials
 - High emissions to the environment
Changing Dutch legislation: Green deal

- Isolated, controlled & monitored materials

- 2020: 100% freely applicable building material
 - Shaped
 - Unshaped
 - Isolated, controlled & monitored materials
Municipal Solid Waste Incineration Bottom Ash (MSWI BA)

- Alternative applications are needed:
 - Vast production quantities,
 - Limited application as a road base material (Netherlands),
 - Landfilling taxes,
 - Stricter legislation.

- BA has comparable properties to those of raw materials applied in building materials

- BA has the potential to be modified to fit this application.
Methodology

• Particle Size Distribution
 – Dry sieving

• Manually sorting fractions
 – Based on appearance

• Specific density
 – He pycnometer

• Water permeable porosity
 – Hydrostatic weighing
Results

- Particle size distribution MSWI BA 0-40 mm
MSWI BA fractions >4 mm

<table>
<thead>
<tr>
<th>Particle size (µm)</th>
<th>Mass %</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>5600</td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>11200</td>
<td></td>
</tr>
<tr>
<td>16000</td>
<td></td>
</tr>
<tr>
<td>22400</td>
<td></td>
</tr>
</tbody>
</table>

- **Unburned**
- **Ceramic and stone**
- **Glass**
- **Metal**
- **Minerals extractable**
- **Minerals not extractable**
- **Minerals extractable by magnet**
- **Minerals not extractable by magnet**
MSWI BA fractions >4 mm: porosity

Extraneous minerals:
- Unburned
- Glass
- Ceramic and stone
- Metals
- Minerals

Extractability by magnet:
- Minors - Not extractable
- Minors - Extractable
- Glass
- Ceramic and stone
- Metals

Unburned (m%)
- 0%
- 10%
- 20%
- 30%
- 40%
- 50%
- 60%
- 70%
- 80%
- 90%
- 100%

Ceramic & Stone

Minerals extractable by magnet

Particle size (µm):
- 4000
- 5600
- 8000
- 11200
- 16000
- 22400

Volume (%):
- 0%
- 10%
- 20%
- 30%
- 40%
- 50%
- 60%
- 70%
- 80%
- 90%
- 100%

Metal

Minerals - High ferromagnetic

Minerals - Low ferromagnetic

Pores mineral - Not extractable

Pores mineral - Extractable

Pores glass

Pores ceramic and stone

29/06/2016
Particle size distribution of sorted material fractions
Porosity size distribution of sorted material fractions
Specific density of MSWI BA material fractions > 4 mm

![Graph showing specific density vs. particle size for different categories: Ceramic and stone, Glass, Mineral - Not extractable, and Mineral - Extractable.](image)

- Ceramic and stone: $R^2 = 0.9735$
- Glass: $R^2 = 0.8507$
- Mineral - Not extractable: $R^2 = 0.9284$
- Mineral - Extractable: $R^2 = 0.8733$
Conclusions

• Coarse aggregates replacement is possible when taking legislation into account

• Highest porosity is present in extractable minerals (5.8%) and ceramics and stones (5.3%)

• With magnetic separation:
 – 70% of the mineral fraction is removable (32.5% overall)
 – A cleaner mineral stream of glass, ceramics and stones can be produced
 – The overall porosity of the remaining BA is reduced
Thank you for your attention!

- Questions, thoughts, ideas...