

Nurturing the Seeds of Wisdom

Application of deep eutectic solvents in biomass valorization

Yang G.H., Wu T.Y., Loow Y. L., Ang L. Y.

CYPRUS 2016

4th International Conference on Sustainable Solid Waste Management

01	02	03	04
Introduction	Literature Review	Case study	Conclusion
Problem Statements Introduction of DES	<text></text>	Case study: Delignification of OPF via DES in improving xylose extraction from Oil Palm Fronds (OPF) Methodology Quantitative and qualitative results	Current Limitations Contributions of Research

01 Introduction Problem Statement Introduction of DES 100 100

Introduction **Projected Growth in Global Energy Demand** Billion tonnes of oil equivalent iea 18 Renewable Gas Nuclear 16 Coal Oil Other renewables Hydro Biomass 14 12 10 8 Nonrenewable 6 4 RELEASE: 16 NOVEMBER 2 0 2000 1980 1990 2010 2020 2030 Fig. 1 Projected Growth in Global Energy Demand (adopted from IEA, 2016)

Fig. 2 Segregation of solid waste in Malaysia (adopted from Agamuthu and Fauziah, 2010)

Introduction (Continued...)

Structural Component of Lignocellulosic Biomass

Introduction (Continued...)

Pretreatment method

Table 1 Comparison of conventional pre-treatment methods of lignocellulosic biomass (adopted from Amirkhani et al., 2015)

Advantages	Pretreatment	Disadvantages
Low cost of alkaline materials	Alkaline pretreatment	Formation of inhibitors Energy intensive Harsh operating condition
Simple pretreatment procedure	Dilute acid pretreatment	Production of inhibitors Hazards due to strong acid use
Mild operating conditions High yield of sugar	Ionic Liquid	Expensive Difficult to synthesize High toxicity Non-biodegradable
A Lemperature	$\frac{Liguidus}{Melt + A}$ $\frac{Liguidus}{Melt + B}$ $\frac{Solidus}{Solidus}$ E $Crystals of A and B$ $\frac{1}{50\%}$ 1 $Composition weight %$	Sharp decrease in melting point than its constituents

Fig. 5 Phase diagram showing the eutectic composition of DES (adopted from Abbott, 2007)

Jeffrey Cheah Foundation
Nurturing the Seeds of Wisdom

02

Literature Review

Types and Properties of DES

Recent Developments of DES in Biomass Processing

ALCOLL D

Literature Review

Synthesis of DES (Heating with agitation)

Types of DES

 Table 2 Types of DES segregated into 4 groups (adopted from Smith et al., 2014)

Туре	Terms	General Formula	Example
1	Metal salt + organic salt	Cat ⁺ X ⁻ zMClx ; M = Composed of enviro and economically	nmentally benign
2	Metal salt hydrate + organic salt	Cat ⁺ X ⁻ zMClx·yH2O;	+ 0 ₂ 0 س₂، ورونون ChCl
3	Hydrogen bond donor + organic salt	Cat ⁺ X ⁻ zRZ; Z = CONH ₂ , COOH, OH	urea + ChCl
 4	Zinc/Aluminium chloride + Hydrogen bond donor	$MCI_{x} + RZ = MCI_{x-1}^{+} RZ + MCI_{x+1}^{-}; M$ = AI, Zn & Z = CONH ₂ , OH	ZnCl ₂ + urea

Properties of DES

Melting point

Fig. 6 Schematic representation of eutectic point on a two component phase diagram (adopted from Smith et al., 2014)

- Sharp decrease in melting point
- Example:

Pure ChCl: 302°C

Pure urea: 135°C

ChCl-urea DES: 12°C

Delocalization of charge due to hydrogen bonding between HBD and halide ion.

Dependent variables

Types of HBD and HBA used

Composition of HBD in mixture

Properties of DES

Surface Tension

- Higher surface tension than most ILs
- Surface tension is closely related to intermolecular forces

Dependent variables

Type of cation in HBA

Presence of hydroxyl groups in cation led to high surface tension

Temperature of system

Increase of temperature resulted in decrease of surface tension.

Gain of energy by halide salt that broke up the intermolecular forces i.e. hydrogen bonding

Properties of DES

Density

 Higher density than water (Type IV DES density > 1.3 g/cm³)
 Dependent Variables
 Types of HBD and HBA used
 Temperature of system
 Water content

Viscosity

- Higher viscosity than ILs
 (except ChCI-ethylene glycol)
- High viscous property accompanied with a low conductivity

Hole Theory

Formation of DES resulted in decrease of average hole radius as it is composed of holes and empty vacancies, hence affecting density and viscosity considerably upon formation.

Recent Developments of DES in Biomass Processing

Solubilization of Lignin

Malaysia

Extraction of Phenolic Compound

Table 3 Summary of lignin solubilization methods with different DES reagents

DES reagent	Mol ratio	Lignocellulo sic Biomass	Operating Conditions	wt% Delignification	References
Lactic acid -	2:1			52 ± 6	
Betaine	5:1		60°C for 12 h in with	56 ± 3	Kumarat
	2:1	Rice straw	agitation of 100 rpm in a	51 ± 1	
Lactic acid –	5:1		screw capped conical flask.	60 ± 2	al., 2015
	9:1			59 ± 3	
Formic acid – ChCl	-	Corn stover	130°C for 2 h with agitation of 100 rpm in a three necked flask.	23.8	Xu et al., 2016
Imidazole – ChCl	2:1			70	Decembers
Urea – ChCl	2:1	Corncob	115°C for 15 h in an oil bath.	24.8	Procentese
Glycerol - ChCl	Glycerol - ChCl 7:3		4.4	et al., 2013	
MONASH University Jeffrey Cheah					

Nurturing the Seeds of Wisdom

Recent Developments of DES in Biomass Processing

Fig. 7 Reaction mechanism of DES in extraction of lignin compound

MONASH University

Recent Developments of DES in Biomass Processing

Fig. 9 Reactions occurred between halogen anion of DES with lignin

Jeffrey Cheah Foundation

Recent Developments of DES in Biomass Processing

Fig. 8 Structural change of DES and solid biomass after proposed reaction mechanism

03

Case study: Extraction of lignin compound from OPF to improve xylose recovery

Case study: Delignification of OPF via DES in improving xylose extraction from Oil Palm Fronds (OPF)

Methodology

Quantitative Results

OPF Characterization (XRD, FT-IR, FE-SEM)

Case study Overview

Type of lignocellulosic biomass: Oil Palm Fronds (OPF)

Type of DES used: ChCl-urea with molar ratio of 1:2

Aim: To determine the recovery of xylose sugar

Fig. 10 Oil palm fronds (OPF), with leaflets removed (adapted from http://www.mightyjacksparrow.com) via inorganic salt hydrolysis enhanced by DES delignification

Case study (Continued...)

Methodology

se study (Continued...)

antitative Result (Xylose Recovery from OPF)

se study (Continued...)

Characterization (FE-SEM)

ol - (0.4 M CuCl₂ inorganic salt pre-treatment)

After inorganic salt pre-treatment

Fig. 10 Morphology of OPF in control set

-urea DES delignification + 0.4 M CuCl₂ inorganic salt pre-treatment)

se study (Continued...)

F Characterization (FT-IR)

Table 5 Assignment of bands wavelength of solid biomass at various stage of pre-treatment

Notation	Band wavelength (cm ⁻¹)	Assignment
Α	~900	Small sharp band indicates cellulose
В	~1235	C-O-C indicates ether bond in lignin
С	~1508-1600	C=C double bond indicates the stretching of aromatic ring in lignin
D	~1735	C=O double bond denotes hemicellulose
E	~1033	Representscelluloseandhemicellulose

nclusion

urrent Limitations & Conclusion

- The development of DES in biomass processing is still in its preliminary stage.
- The potential of DES in biomass processing has been proven based on literature reviews and case study above.
- Main issues Recyclability issues of DES after pre-treatment Little yet to be known on the effects of different types of DES on biomass processing
- Further investigation will be needed to rectify the issue above.

nclusion (Continued...)

ontributions of Proposed Research

nis study is expected to be able to provide a better understanding nd outcome on the following aspects:

- Valuable knowledge for lignocellulosic residues pretreatment that proves to be beneficial for various industries.
- An introduction to the use of DES as a solvent for delignification and extraction of phenolic compounds from lignocellulosic biomass.
- In alignment with the National Key Economic Area mainly related to entry point project (EPP7) in Agriculture on waste management of fresh fruits/vegetables and their by-products.

ferences

, Hayyan, M., AlSaadi, M.A. & Hashim, M.A.: Potential applications of deep eutectic solvents in nanotechnology. Chemical Engineering Journal, vol. 273, pp. 551-67 (2015).

arron, J. C., Ryder, K. S. and Wilson, D., (2007), Chem. Eur. J., 13, pp 6495-6501.

oothby, D., Capper, G., Davies, D.L., Rasheed, R. K., (2004) J. Am. Chem. Soc., vol. 126, pp. 9142–9147.

Hayyan, M., Alsaadi, M.A., Akib, S., Hayyan, A. & Hashim, M.A.: Glycerol-based deep eutectic solvents: Physical properties. Journal of Molecular Liquids, vol. 215, pp. 98-103 (2016).

raz, M. & Irshad, M., (2014), 'Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review', Journal of Radiation Research and Applied Sciences, vol. 7, no. 2, pp. 163-73.

'unus, R, Rashid, U, Salleh, SF, Radhiah, ABD & Syam, S 2015, 'Low-Temperature Dilute Acid Hydrolysis of Oil Palm Frond', Chemical Engineering Communications, vol. 202, no. 9, pp. 1235-44.

ay, M. J., White, J.F., Zhang, Z.C. & Holladay, J.E. (2009), 'Reactions of lignin model compounds in ionic liquids', Biomass and Bioenergy, vol. 33, no. 9, pp. 1122-1130.

enick C., Warwick S., (2011) Biomass fractionation for the biorefinery: heteronuclear multiple quantum coherence — nuclear magnetic resonance investigation of lignin isolated from solvent fractionation of switchgrass. J Agric Food pp. 9232-9242.

arte, F., (2015), Introduction to Chemicals from Biomass: Second Edition, Introduction to Chemicals from Biomass: Second Edition.

ović, M., Radojčić, I., Jokić, S., (2015), 'Green solvents for green technologies', Journal of Chemical Technology and Biotechnology, vol. 90, no. 9, pp. 1631-1639.

María, P., (2014), 'Recent trends in (ligno)cellulose dissolution using neoteric solvents: Switchable, distillable and bio-based ionic liquids', Journal of Chemical Technology and Biotechnology, vol. 89, no. 1, pp. 11-18.

oniruzzaman, M., & Uemura, Y., (2016), 'Enhanced enzymatic delignification of oil palm biomass with ionic liquid pretreatment', Biochemical Engineering Journal, vol. 110, pp. 1-7.

ricio, S., Atilhan, M., (2015), 'Deep eutectic solvents: Physicochemical properties and gas separation applications', Energy and Fuels, vol. 29, no. 4, pp. 2616-2644.

Arbain, D., Nashef, E.M., Jamal, P., (2015), 'Applicability evaluation of Deep Eutectic Solvents-Cellulase system for lignocellulose hydrolysis', Bioresource Technology, vol. 181, pp. 297-302.

Illi, F.S., Alnashef, I.M., Al-Wahaibi, Y.M., Al-Wahaibi, T. & Hashim, M.A.: Glucose-based deep eutectic solvents: Physical properties. Journal of Molecular Liquids, vol. 178, pp. 137-41 (2013).

, Abu Hassan, O., Wong, H.K., Liang, J.B., (2003), 'Utilization of oil palm frond - Based diets for beef and dairy production in Malaysia', Asian-Australasian Journal of Animal Sciences, vol. 16, no. 4, pp. 625-634.

Li, T., Luo, M., Wang, W., Zu, Y. & Fu, Y., (2015) 'Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography', Separation and shnology, vol. 149, pp. 237-44.

S.L., Xue, B.L., Sun, R.C., (2013), Quantitative structures and thermal properties of birch lignins after ionic liquid pretreatment. J Agric Food Chem, vol. 61, pp. 635-645.

sult & Discussion (Continued...)

PF Characterization (XPD) Grystallinity index of solid biomass at various stage of pre-treatment Control (0.4 M CuCl₂ inorganic salt pretreatment) Stage of pre-treatment **Crystallinity Index Raw OPF** 34.99% After inorganic salt 36.35% pre-treatment ChCl-urea DES delignification + 0.4 M CuCl₂ inorganic salt pre-treatment Stage of pre-treatment **Crystallinity Index Raw OPF** 34.99% After DES 41.02% delignification After inorganic salt 45.94% pre-treatment