Phosphorus release from biochars prepared from rice husks, grape pomace and olive tree prunings

Ioanna Manolikaki, Argirios Mangolis, Evan Diamadopoulos
School of Environmental Engineering
Technical University of Crete, Greece
WHAT IS BIOCHAR?

Biochar (BC) is a high-carbon solid produced by pyrolysis of biomass and intended for soil applications.

AGRONOMIC APPLICATIONS

- Biochar increases the capacity of the soil holding water and nutrients reducing the need for fertilizers
- Macro- and micronutrients retained in biochar could be released and made available to the plants
- BC is a potential P soil amendment as reserves of phosphorus-rich ores will become depleted in 30-100 years

ENVIRONMENTAL APPLICATIONS

- Atmospheric carbon sink mitigating climate change
 - Estimated residence time of carbon in soil: 200-1000 years
- Reduction of N₂O emissions from soil (strong greenhouse gas)
- Adsorbent in water phase (low-grade activated carbon)
OBJECTIVES

◆ Production of biochar via pyrolysis from
 ➢ Rice husks (RH)
 ➢ Grape pomace (GP)
 ➢ Olive tree prunings (OP)

◆ Release of P already present in biochar and raw biomass in water
 ➢ Batch desorption and successive leaching experiments

◆ Do P-leached biochars have the potential to become sorbents of fertilizer P?

◆ Agronomic application of biochar for cultivation of ryegrass
EXPERIMENTAL PART

- Biomass pyrolysis temperature: 300°C and 500°C

- Phosphate desorption/leaching tests
 - Batch desorption kinetics (Biomass/Biochar : Water = 1:100)
 - Successive leaching experiments (4 successive extractions; Contact time: 24 h)

- Phosphate sorption experiments
 - Completely leached GP-300 and RH-300 biochar samples

- Cultivation of ryegrass (*Lolium perenne* L.)
 - Two types of soil: Sandy loam, Loam
 - Presence (2%) and absence of biochar
 - Presence (2%) and absence of compost
 - Additional fertilization (N and micro-nutrients) or not
RESULTS

Properties of raw biomass and biochars

<table>
<thead>
<tr>
<th>BIOCHARS</th>
<th>Units</th>
<th>Rice husk</th>
<th>Grape pomace</th>
<th>Olive tree prunings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>300°C</td>
<td>500°C</td>
<td>300°C</td>
</tr>
<tr>
<td>Ca²</td>
<td>%</td>
<td>44.00</td>
<td>35.70</td>
<td>46.60</td>
</tr>
<tr>
<td>Na</td>
<td>%</td>
<td>2.00</td>
<td>0.88</td>
<td>1.60</td>
</tr>
<tr>
<td>Ash³</td>
<td>%</td>
<td>63.54</td>
<td>91.25</td>
<td>25.67</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>7.50</td>
<td>7.60</td>
<td>10.80</td>
</tr>
<tr>
<td>EC</td>
<td>μS/cm</td>
<td>265</td>
<td>252</td>
<td>1058</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RAW BIOMASS</th>
<th>Units</th>
<th>Rice husk</th>
<th>Grape pomace</th>
<th>Olive tree prunings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca²</td>
<td>%</td>
<td>37.00</td>
<td>49.60</td>
<td>55.50</td>
</tr>
<tr>
<td>Na</td>
<td>%</td>
<td>0.43</td>
<td>2.00</td>
<td>0.65</td>
</tr>
<tr>
<td>Ash³</td>
<td>%</td>
<td>4.73</td>
<td>1.82</td>
<td>2.22</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>6.10</td>
<td>5.00</td>
<td>5.80</td>
</tr>
<tr>
<td>EC</td>
<td>μS/cm</td>
<td>118.6</td>
<td>207</td>
<td>153.5</td>
</tr>
</tbody>
</table>

² As received basis
³ Dry basis
Nutrient content of raw biomass and biochar samples by ICP-MS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>mg g⁻¹</td>
<td>0.65</td>
<td>4.36</td>
<td>5.34</td>
<td>0.21</td>
<td>1.80</td>
<td>3.48</td>
<td>0.99</td>
<td>3.63</td>
<td>5.99</td>
</tr>
<tr>
<td>Mg</td>
<td>mg g⁻¹</td>
<td>0.47</td>
<td>5.99</td>
<td>6.09</td>
<td>0.18</td>
<td>0.65</td>
<td>1.09</td>
<td>0.77</td>
<td>4.86</td>
<td>6.93</td>
</tr>
<tr>
<td>K</td>
<td>mg g⁻¹</td>
<td>4.95</td>
<td>65.9</td>
<td>64.2</td>
<td>4.5</td>
<td>14.5</td>
<td>20.5</td>
<td>29.1</td>
<td>164.7</td>
<td>219.2</td>
</tr>
<tr>
<td>Ca</td>
<td>mg g⁻¹</td>
<td>0.11</td>
<td>3.18</td>
<td>3.18</td>
<td>0.01</td>
<td>0.04</td>
<td>0.07</td>
<td>0.10</td>
<td>1.13</td>
<td>1.72</td>
</tr>
<tr>
<td>Mn</td>
<td>mg g⁻¹</td>
<td>0.01</td>
<td>0.17</td>
<td>0.16</td>
<td>0.09</td>
<td>0.34</td>
<td>0.35</td>
<td>0.01</td>
<td>0.12</td>
<td>0.17</td>
</tr>
<tr>
<td>Fe</td>
<td>mg g⁻¹</td>
<td>0.03</td>
<td>0.53</td>
<td>0.62</td>
<td>0.01</td>
<td>0.08</td>
<td>0.18</td>
<td>0.06</td>
<td>1.75</td>
<td>2.64</td>
</tr>
<tr>
<td>Cu</td>
<td>mg g⁻¹</td>
<td>0.00</td>
<td>0.05</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.02</td>
<td>1.37</td>
</tr>
<tr>
<td>Zn</td>
<td>mg g⁻¹</td>
<td>0.01</td>
<td>0.15</td>
<td>0.13</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
<td>0.09</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Unpyrolyzed grape pomace and rice husk biochars at 300°C and 500°C showed the highest P desorption level in batch experiments.
Successive leaching of P

A continuous release of P from all biochars as compared to raw biomass samples, where the highest concentrations were detected during the first extraction.

Biochars, at 500°C, leached more P in all four extractions, compared to biochars at 300°C, apart from olive tree prunings biochars, where both pyrolysis temperatures presented a similar trend.
Sorption of P on leached biochars was not observed.
At the end of the 3rd harvest, application of compost/biochar provided fertilization in the absence of additional Phosphorus at statistically significance difference

Yet, fertilization with N and micro-nutrients was still necessary
CONCLUSIONS

◆ Release of phosphates varies with biochar type.

◆ All six biochars showed a continuous phosphate release into the water phase.

◆ Both biochars tested (after previously being leached from their P content) showed small additional P sorption capacity, therefore they could not be characterized sorbents of fertilizer P.

◆ Agronomic application of compost/biochar provided phosphorus to a loam soil.

BUT

◆ The efficiency of biochar agronomic applications depends on
 ➢ Type of soil
 ➢ Type of biochar
 ➢ Additional nutrients/soil conditioners
 ➢ Environmental conditions