Investigation the possibility of using non-woven materials from recycled fibers for open oil spills clean up

Margarita Neznakomova, Luben Tzankov, Silvena Boteva, Mohamed Elhag
• hydrocarbons come in the aquatic environment from a variety of natural and artificial sources;

• maritime transport - performance of standard operations, and smaller part of incidents;

• oil disperses rapidly over a huge area with large differences in thickness of the floating layer in a short time;

• impedes the use of any techniques for dealing with spills.
- atmospheric destruction of oil - physical and chemical changes;
- performed under the action of natural forces - evaporation, dispersing, dissolving and precipitation and leads to the disappearance of oil from the water surface;
- water-oil emulsion - increase its viscosity, as the oil absorbs water up to four times its weight and promotes its resistance.
- oil film - breaks the exchange of energy between the atmosphere and the seas;
- low surface tension, low gas permeability and other negative qualities adversely affect the water physical and chemical conditions;
- leading to flora and fauna destruction in the sea basin, contamination animals with carcinogenic hydrocarbons that subsequently fall into human body.
Methods for cleaning up oil spills

Collection and recovery - long floating plastic or rubber enclosures (booms).
Sorbents

- hydrophobic and oleophilic,
- high degree of absorption and retention for a long period of time on the surface of the water,
- allow the extraction, reuse or recycle of absorbed oil
Recycling of textile waste

- Recovery and recycling of textiles - of great benefit for the economy and for the environment;

- Textile materials are a problem for landfills - synthetic fibers, degrade slowly and woolen during decomposition produce methane, which is one of the main culprits for the global warming;

- The need for new resources is reduced, pollution in the processing of new materials is avoided.
Materials and methods

non-woven materials obtained by needlepunching and stitch-bonding method

<table>
<thead>
<tr>
<th>Materials</th>
<th>Type</th>
<th>Composition</th>
<th>Parameters</th>
</tr>
</thead>
</table>
| Material 1 | stitch-bonding type Maliwatt | Wool 15%
Cotton 18%
Viscose 20%
Polyester 17%
PAN 30%
Stitch fiber - polyester 100% | Step of stitching: 2.12 cm
Length of thread in 1 cm: 3.74 cm
Number of stitches in 1 cm: 3.2 |
| Material 2 | stitch-bonding type Maliwatt | Wool 5%
Cotton 20%
Viscose 17%
Polyester 23%
PAN 35%
Stitch fiber - polyester 100% | Step of stitching: 0.7 cm
Length of thread in 1 cm: 3.26 cm
Number of stitches in 1 cm: 3 |
| Material 3 | needle punched | Wool 20%
Cotton 20%
Viscose 20%
Polyester 20%
PAN 15%
Polyamide 5% | Frequency of needle-punching: 500 min\(^{-1}\)
Depth of needle-punching: 12 mm
Projection density: 15 needles/cm |
| Material 4 | needle punched | 100% recovered wool | Frequency of needle-punching: 800 min\(^{-1}\)
Depth of needle-punching: 10 mm
Projection density: 50 needles/cm |
- seawater - from the Black Sea in the Bourgas area;

- two types of oil - mineral motor oil OMV Austroil SAE 15W/40 and waste motor oil collected from oil change workshop;

- developed methodology in a laboratory using different amounts of pure mineral and waste oil in static conditions and agitation and residence time of the samples in the suspension from 10 to 30 min suspension used -100 ml seawater and 2 ml oil;

- degree of sinking - determined after a period of 48 hours;

- characterized materials - by determining the thickness, area and volume weight, air permeability;

- retention and extraction of oil from the suspension - determined by weight after drying 4 hours at 105° C with blasting.
Results and discussion

Thickness of used fibrous sorbents

Volume density
Mass per unit area

Coefficient of air permeability
Degree of adsorption of pure oil under agitation and under static conditions.
Degree of adsorption of waste oil

under agitation

under static conditions
Amount of adsorbed pollutant

under agitation

under static conditions
Results from combustion of waste samples

<table>
<thead>
<tr>
<th>Material</th>
<th>Heat of combustion, kcal/kg</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unprocessed</td>
<td>Processed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>material</td>
<td>material</td>
</tr>
<tr>
<td>Material 1</td>
<td>5754 ± 30</td>
<td>30 015 ± 30</td>
<td></td>
</tr>
<tr>
<td>Material 2</td>
<td>7399 ± 30</td>
<td>31 452 ± 30</td>
<td></td>
</tr>
<tr>
<td>Material 3</td>
<td>7260 ± 30</td>
<td>31 361 ± 30</td>
<td></td>
</tr>
<tr>
<td>Material 4</td>
<td>8122 ± 30</td>
<td>34 365 ± 30</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

As a result of tests carried out it has been found that the stitch-needle nonwoven materials have better ability to retain oil in comparison to needle-punched, because of the greater amount of fibrous surface.

The use of waste fibers mixtures with a higher content of PAN is more effective for absorbents of petroleum.

After use of the sorbents, their calorific value increases and therefore can be used as an energy source. But due to changing the side of the waste they have to be burned in special facilities, such as channel kilns.

Depending on the fiber composition, textile sorbents sink after different periods of stay in the water due to the amount included hydrophilic fibers, but these studies continue in order to provide advice for the way and time of use of non-woven blankets from generated fibers.
THANK YOU FOR YOUR ATTENTION!

Project № BG161PO003-1.1.05 – 0261 / 15.02.2013 “Filter media of nonwovens”, developed by E-SOLAR Ltd. is funded under the Operational Program “Development of the Competitiveness of the Bulgarian Economy” 2007-2013, cofinanced by the European Union through the European Regional Development Fund and the national budget of the Republic of Bulgaria.