
# Pomegranate peel and orange juice by-product as new biosorbents of phenolic compounds from olive mill wastewaters





Maria Ververi<sup>1</sup>, Kyriakos Kaderides<sup>1</sup>, Nikos Sakellaropoulos<sup>2</sup>, Athanasia M. Goula<sup>1</sup>,

<sup>1</sup>Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment,

Aristotle University, Thessaloniki, Greece

<sup>2</sup>Department of Chemical Engineering, School of Engineering, Aristotle University, Thessaloniki, Greece

## Olive oil production

- ♦ The extraction of olive oil consists of three steps:
  - 1. Olive crashing, where the fruit is broken down and the oil is exported
  - 2. Mixing, where the remaining paste is slowly mixed to increase the oil extraction
  - 3. Oil separation from the remaining wastes
    - i. Traditional pressing
    - ii. 3- phases centrifugal extraction system
    - iii. 2- phases centrifugal extraction system



(Klen & Vodopivec, 2012)

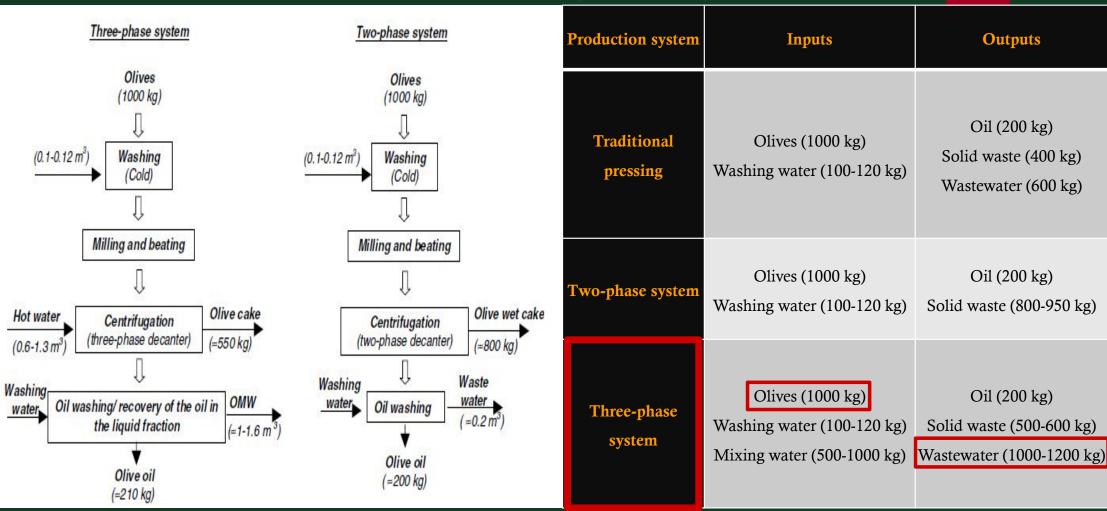
#### **♦** Traditional pressing

- Obsolete technology
- ◆ A solid fraction, "olive husk", is obtained as a by- product with an emulsion containing the olive oil
- The olive oil is separated from the remaining olive mill wastewater by decanting

#### **♦** Three – phase extraction process

- Predominant process in modern olive mills
- Two streams of waste
  - i. a wet solid cake (~30% of raw material weight) called "orujo" or "olive cake"
  - ii. a watery liquid (50% of raw material weight) called "alpechin" or "olive mill wastewater (OMW)

#### **♦ Two – phase extraction process**


- "Ecological" method, reduces the olive mill waste by 75%
- Two fractions
  - i. A solid called "alperujo" or "olive wet husk" or "wet pomace" or "two-phase olive mill waste" (TPOMW)
  - ii. A liquid (olive oil)



(Tsagaraki et al., 2007)

### Olive oil extraction by- products

(Goula et al., 2016)



Three- and two-phase centrifugation systems

(Alburquerque et al., 2004)

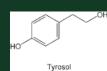
The management of waste from olive mills

#### ♦ Olive cake

- i. Solid fuels
- ii. Animal feed supplement
- iii. Return to the olive grove as mulch

#### Olive mill wastewater (OMW)

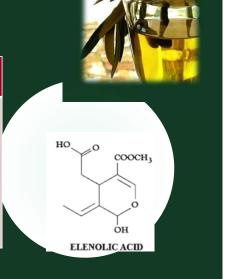
- i. Disposal of OMW in nearby aquatic receivers
- ii. Physical and physicochemical processes
- iii. Biological processes
- iv. Coupled physicochemical and biological treatments

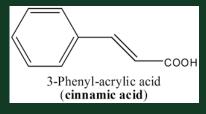





(Tsagaraki et al., 2007; Goula et al., 2016)

### Composition of olive mill wastewaters and solid residues

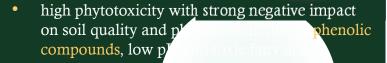

| Component          |                                     | Olive mill by-pro | duct                                                | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|--------------------|-------------------------------------|-------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Component          | OMW                                 | Olive cake        | TPOMW                                               | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Total carbon (%)   | 2.0-3.3                             | 29.0-42.9         | 25.4                                                | Vlyssides et al., 1998; Garcia-Castello et al., 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| T-4-1-4(0/)        | Saviozzi et al., 2001; Di Giovacchi |                   | Saviozzi et al., 2001; Di Giovacchino et al., 2006; |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Total nitrogen (%) | 0.63                                | 0.2-0.3           | 0.25-1.85                                           | Dermeche et al., 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| A 1 (0/)           | 1.0                                 | 1740              | 1.4.4.0                                             | Vlyssides et al., 1998; Di Giovacchino et al., 2006;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Ash (%)            | 1.0                                 | 1.7-4.0           | 1.4-4.0                                             | Vlyssides et al., 1998; Garcia-Castello et al., 2010 Saviozzi et al., 2001; Di Giovacchino et al., 2006; Dermeche et al., 2013 Vlyssides et al., 1998; Di Giovacchino et al., 2006; Lafka et al., 2011 Vlyssides et al., 1998; Paredes et al., 1999; Di Giovacchino et al., 2006; Dermeche et al., 2013 Vlyssides et al., 1998; Caputo et al., 2003; Vlyssides et al., 1998; Alburquerque et al., 2004 Vlyssides et al., 1998; Caputo et al., 2004 Vlyssides et al., 1998; Caputo et al., 2003; Dermeche et al., 2013 Vlyssides et al., 1998 Vlyssides et al., 1998 |  |  |
| T:::1- (0/)        | 0.02.4.25                           | 2 5\0.0 72        | 2.76.19.00                                          | Vlyssides et al., 1998; Paredes et al., 1999;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Lipids (%)         | 0.03-4.25                           | 3.5`0-8.72        | 3.76-18.00                                          | Di Giovacchino et al., 2006; Dermeche et al., 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| TD ( 1 ) (0/)      | 1 50 10 00                          | 0.00.1.00         | 0.02.10.20                                          | Vlyssides et al., 1998; Caputo et al., 2003;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Total sugars (%)   | 1.50-12.22                          | 0.99-1.38         | 0.83-19.30                                          | Vlyssides et al., 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Total proteins (%) |                                     | 3.43-7.26         | 2.87-7.20                                           | Vlyssides et al., 1998; Alburquerque et al., 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| T-4-1 "11- (0/)    | 0.62.5.45                           | 0.200.1.146       | 0.40.2.42                                           | Vlyssides et al., 1998; Caputo et al., 2003;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Total phenols (%)  | 0.63-5.45                           | 0.200-1.146       | 0.40-2.43                                           | Dermeche et al., 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Cellulose (%)      |                                     | 17.37-24.14       | 14.54                                               | Vlyssides et al., 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Hemicellulose (%)  |                                     | 7.92-11.00        | 6.63                                                | Vlyssides et al., 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Lignin (%)         |                                     | 0.21-14.18        | 8.54                                                | Vlyssides et al., 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |




### **Phenolics of OMW**

| Phenolic compound | Content (mg/L) | Reference        |
|-------------------|----------------|------------------|
| Tyrosol           | 5-100          |                  |
| Hydroxytyrosol    | 35-130         |                  |
| Caffeic acid      | 4-12           | Narra-idia 2000  |
| Elenileic acid    | 17-1430        | Navrozidis, 2008 |
| Luteolin          | 2-623          |                  |
| Cinnamic acid     | 1-118          |                  |








#### **Characterization of OMW**

#### **♦ OMWW**

- Aqueous, dark, foul smelling, turbid liquid, includes emulsified grease, easily fermentable
- High organic content(57.2-62.1%)
- Acidic character (pH 2.2 -5.9)
- High concentrations of phenolic compounds (up to 80 g/L)
- High content of solid matter (total solids up to 20 g/L)

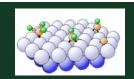


- strong discolorati
   waters, resulting i
   pollution
- threatening the aquatic life
- problems with offensive odors



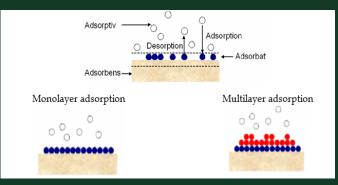
Potential source of phenolic compounds and other natural antioxidants




- Membrane separation
- Extraction
- Chromatographic separation
- Adsorption

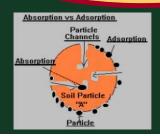
#### Phenolic compounds

as food additives and/or nutraceuticals


(de Leonardis et al., 2007; Rosello-Soto et al., 2015)

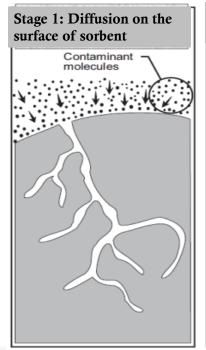
### Adsorption

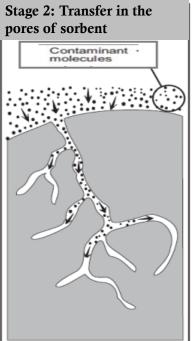


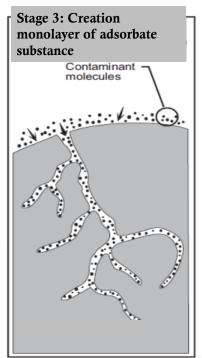

♦ Adsorption method is generally considered to be the best, effective, low-cost and most frequently used method for the removal of phenolic compounds

The profitability of an industrial process for the adsorptive purification are phenolic compounds from OMW depends mainly on the adsorption effectively rates during desorption



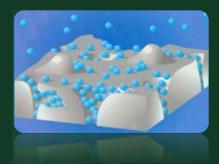

Transfer of a solute from either a gas or liquid/solution to a solid.


The solute is held to the surface of the solid as a result of due to intermolecular attraction with the solid molecules.

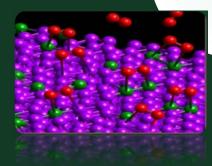




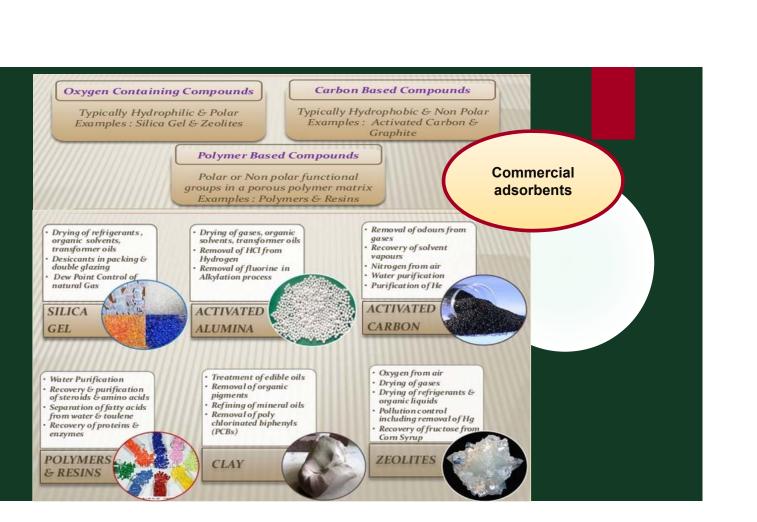

### Stages of adsorption



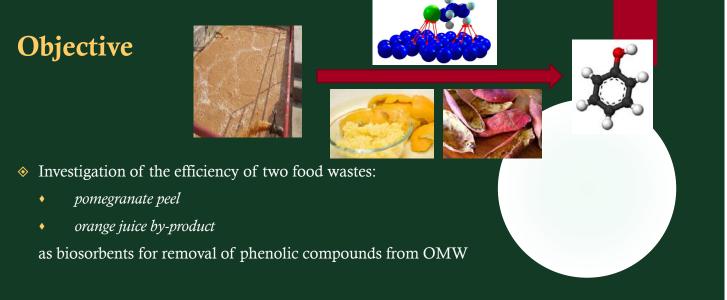


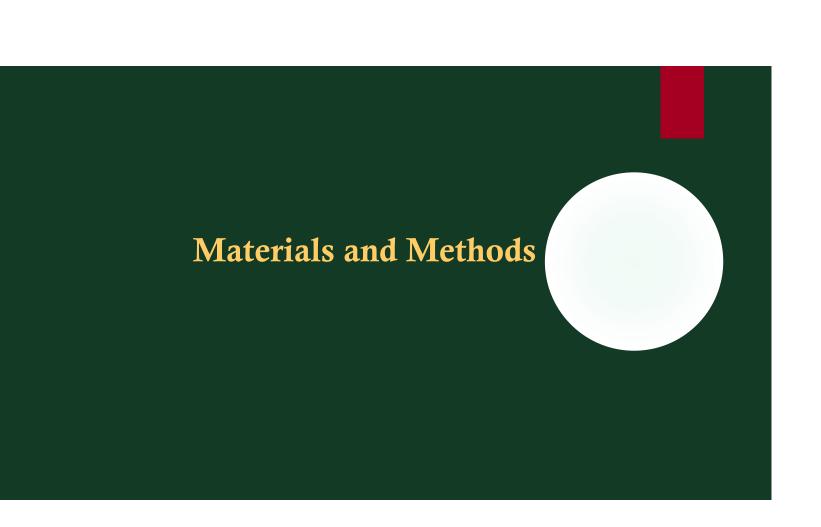

#### Mechanisms

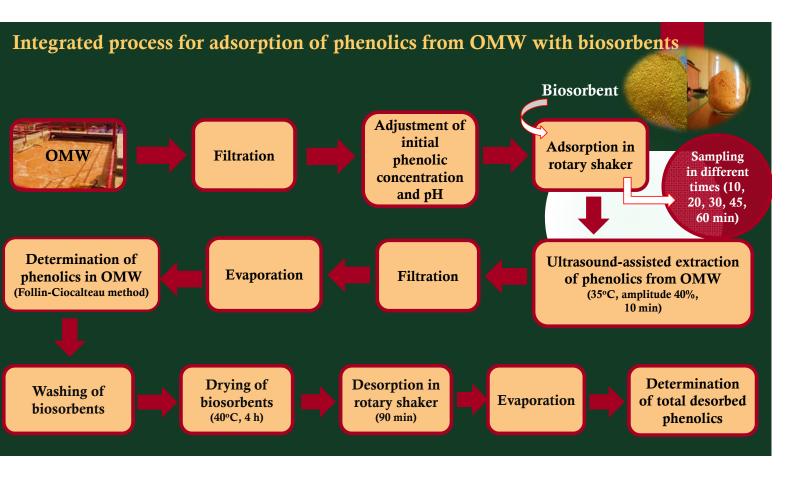

- **Exchange adsorption (ion exchange):** electrostatic due to charged sites on the surface
- ♦ Physical adsorption: Van der Waals attraction between adsorbate and adsorb
- ♦ **Chemical adsorption:** Some degree of chemical bonding between adsor adsorbent characterized by strong attractiveness. Adsorbed molecules are on the surface.

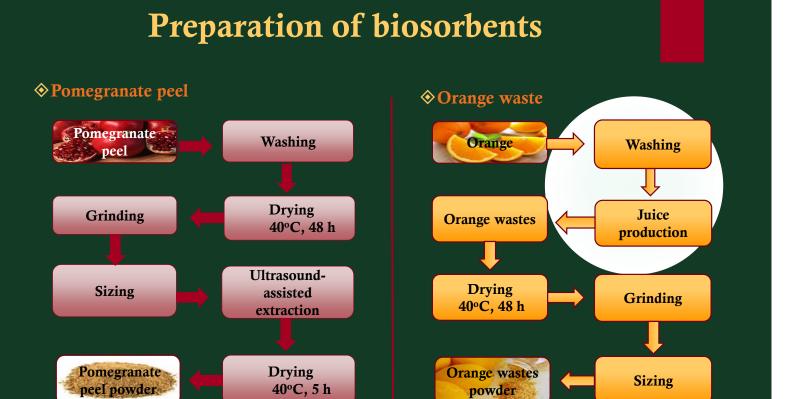



Physical adsorption




Chemical adsorption





| Co     | Commercial adsorbents used for recovery of phenolics from OMW |           |                      | Biosorbents used for recovery of various components |                         |                      |                     |  |
|--------|---------------------------------------------------------------|-----------|----------------------|-----------------------------------------------------|-------------------------|----------------------|---------------------|--|
| Ads    | sorbent                                                       | Yield (%) | Reference            | Adsorbent                                           | Recovery                | Yield (%)            | Referenc            |  |
|        | XAD-4                                                         | 3.5- 97.5 |                      | Pine wood char                                      | Pb, Cd, Ar              | 3-54                 |                     |  |
|        | XAD-16                                                        | 4.5- 99.0 |                      | Oak bark char                                       | from water              | 26-98                | (Dinesh Mohan et al |  |
|        | XAD-761                                                       | 2.1- 87.2 |                      | Oak balk clial                                      | 016                     | 20 70                |                     |  |
|        | Xad-7hp                                                       | 3.1- 98.0 |                      |                                                     | Cd from water           | 77.0- 89.2           |                     |  |
|        | FPX-66                                                        | 4.5- 98.0 |                      |                                                     | Pb from water           | 76.0 -58.3           | (Jamil, 2010)       |  |
| Resin  | PVPP                                                          | 0.9-100   | (Kaleh et al., 2016) | Banana peel                                         |                         |                      |                     |  |
|        | AF5                                                           | 31.7-91.4 |                      |                                                     | Cr from leather         | 99.1- 100            |                     |  |
|        | AF6                                                           | 90- 100   | - 100 tar            | tanning                                             | tanning 99.1-100        | (Jamil et al., 2008) |                     |  |
|        | AF7                                                           | 92.4- 100 |                      |                                                     |                         |                      |                     |  |
|        | GAC                                                           | 71- 100   |                      | Coir pith                                           | Congo red               | 30.5-66.5            | (Namasivayam et al. |  |
|        | PAC                                                           | 93.5- 100 |                      | carbon                                              | 8                       |                      | (- 1000-10)         |  |
| Val d' | 'Orsia soil                                                   | 27- 67    |                      |                                                     | Direct red from         | 55-80                |                     |  |
| Z      | Zeolite                                                       | 37- 45    | (Santi, 2007)        |                                                     | water                   | 55-80                |                     |  |
| Ве     | entonite                                                      | 29-45     |                      | Banana pith                                         | Acid brilliant          |                      | (Namasivayam, 1     |  |
| Ban    | iana peel                                                     | 34 -66    | (Achaka et al.,2009) |                                                     | blue from water         | 65-95                |                     |  |
| Wh     | neat bran                                                     | 12-63     | (Achak et al., 2014) | Apple pomace                                        | Textile dye<br>effluent | 91-100               | (Robinson et al., 2 |  |



- Optimization of adsorption process using biosorbents
- Development of a new, low cost method for removal of phenolic compounds from OMW







## Composition of biosorbents

#### **POMEGRANATE PEEL**

| Component       | Content (%) |
|-----------------|-------------|
| Total solids    | 96.00       |
| Moisture        | 4.00        |
| Total sugars    | 31.38       |
| Protein         | 8.72        |
| Crude Fiber     | 21.06       |
| Fat             | 9.40        |
| Ash             | 5.00        |
| Total phenolics | 8.10        |

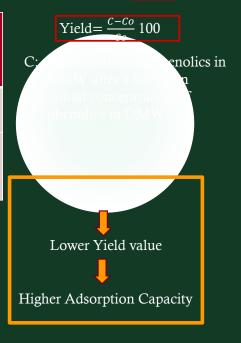
#### ORANGE JUICE WASTE

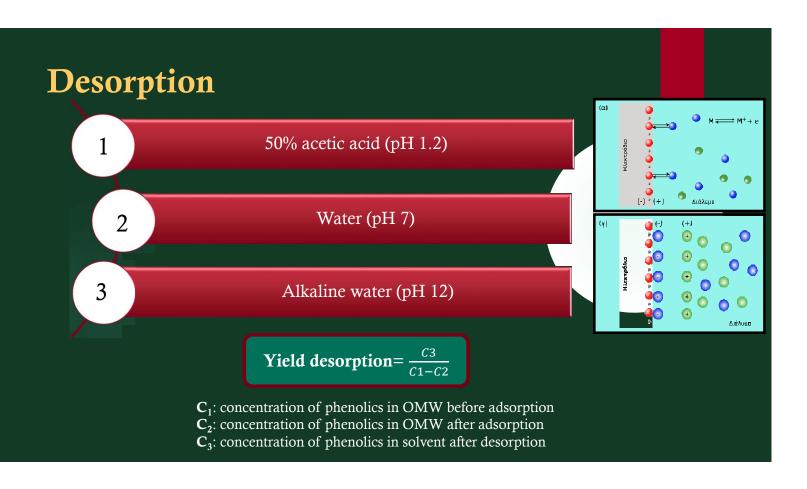
| Component               | Content<br>(g/100 g DM) |
|-------------------------|-------------------------|
| Moisture                | 8.52                    |
| Protein                 | 13.25                   |
| Lipid                   | 2.12                    |
| Ash                     | 4.25                    |
| Carbohydrate            | 80.38                   |
| Total dietary fiber     | 65.7                    |
| Insoluble dietary fiber | 48.9                    |
| Soluble dietary fiber   | 16.8                    |



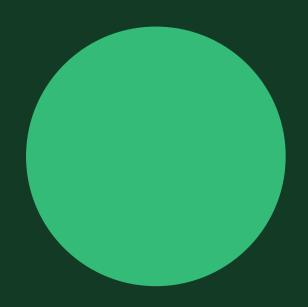
- Adsorption temperature
- pH
- · OMW/sorbent ratio
- Initial concentration of phenolics in OMW
- Particle size of biosorbent



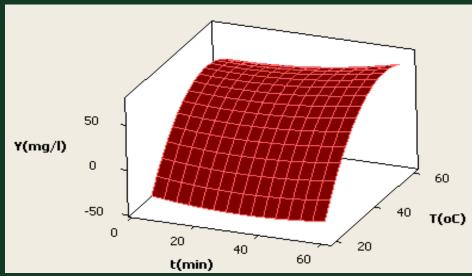

#### **Experimental Design for Optimization of Adsorption**

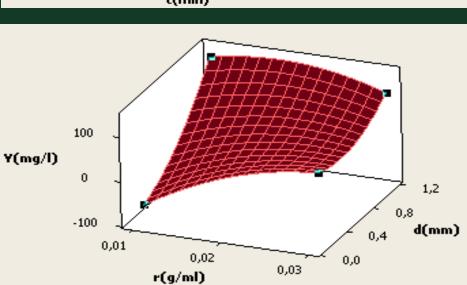

#### Levels of variables

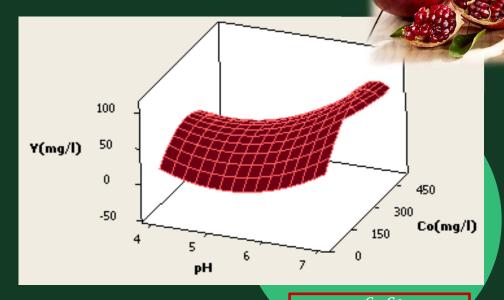
| T (°C) | pН   | Sorbent/OMW<br>ratio (r) (g/mL) | Initial phenolic concentration in OMW (C <sub>0</sub> ) (mg/L) | Sorbent particle size (d) (mm) | Biosorbent<br>type        |
|--------|------|---------------------------------|----------------------------------------------------------------|--------------------------------|---------------------------|
| 20     | 4.00 | 0.010                           | 50.0                                                           | 0.149                          | Dama a sua u a da u a a 1 |
| 30     | 4.75 | 0.015                           | 162.5                                                          | 0.373                          | Pomegranate peel          |
| 40     | 5.50 | 0.020                           | 275.0                                                          | 0.515                          |                           |
| 50     | 6.25 | 0.025                           | 387.5                                                          | 0.847                          | Orange juice<br>wastes    |
| 60     | 7.00 | 0.020                           | 500.0                                                          | 1.180                          | ,, astes                  |


Response Surface Methodology

(32 experiments for each
biosorbent)





## Results



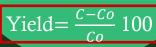
## Pomegranate peel - biosorbent







Max adsorption capacity:


✓ T : 20°C

✓ pH : 4.75

<u>r</u>: 0.01 g/mL

 $\checkmark$  C<sub>O</sub> : 50 mg/L

✓ d : 0.149 mm



Lower C



Lower Yield value



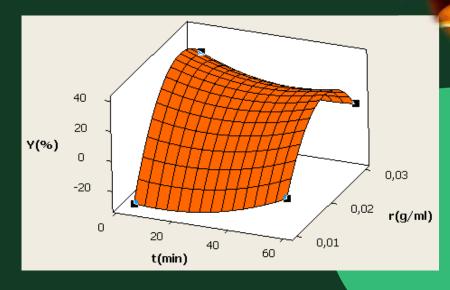
Higher Adsorption Capacity

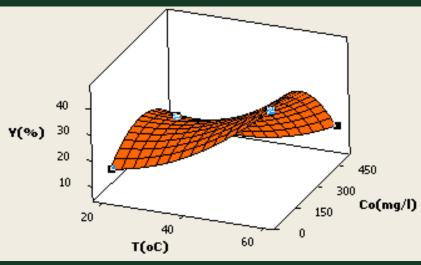
Pomegranate peel as biosorbent – Optimization

| Optimal<br>D High<br>0,51309 Low              | t(min)<br>60,0<br>[5,0]<br>5,0 | T(oC)<br>60.0<br>[20,0]<br>20,0 | pH<br>7.0<br>[5,9394]<br>4,0 | r(g/ml)<br>0.030<br>[0,010]<br>0,010 | Co(mg/l)<br>500,0<br>[50,0]<br>50,0 | d(mm)<br>1,1800<br>[0,1490]<br>0,1490 |
|-----------------------------------------------|--------------------------------|---------------------------------|------------------------------|--------------------------------------|-------------------------------------|---------------------------------------|
| Composite<br>Desirability<br>0,51309          |                                |                                 |                              |                                      |                                     |                                       |
| Y( % )<br>Minimum<br>Y=-261.7812<br>= 0,51309 |                                |                                 |                              |                                      |                                     |                                       |




| Statistically significant parameters | p-value |
|--------------------------------------|---------|
| рН                                   | 0.034   |
| $T^2$                                | 0.003   |
| pH <sup>2</sup>                      | 0.036   |
| r <sup>2</sup>                       | 0.049   |
| C <sub>o</sub>                       | 0.000   |
| $d^2$                                | 0.033   |
| T*r                                  | 0.047   |


The phenolics concentration reduced by 2.6 times


Yield= $\frac{c-co}{co}$ 100

y = -52 + 260d - td + 184Tr - 3Td - 7374rd

## Orange juice waste - biosorbent

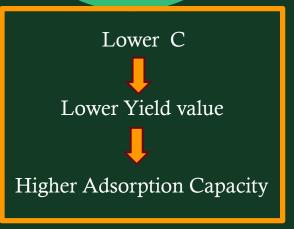






#### Max adsorption capacity:

✓ T : 30°C


**✓ pH** : 7

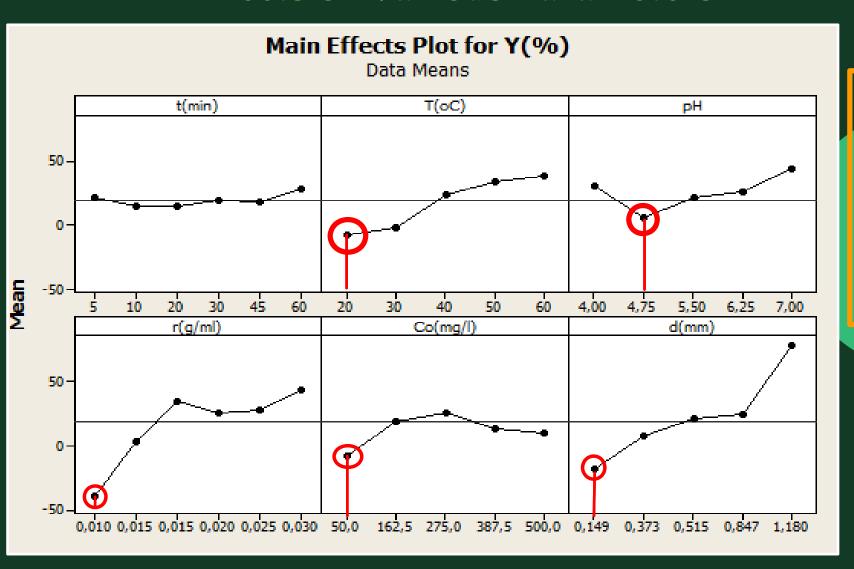
✓ r : 0.01 g/mL

 $C_0$  :162.5 mg/L

**√ d** : 0.149 mm

✓ t: : 20min




## Orange juice wastes as biosorbent - Optimization

| t       | 60 min    |
|---------|-----------|
| Т       | 20°C      |
| рН      | 4.00      |
| r       | 0.03 g/mL |
| $C_{o}$ | 500 mg/L  |
| d       | 1.18 mm   |

$$y = -777 + 10T + 368d - 337909r^2 - 165d^2$$
  
 $-2TpH - 3Td + 1431pHr$ 

| Statistically significant parameters | p-value |
|--------------------------------------|---------|
| Т                                    | 0.012   |
| d                                    | 0.014   |
| pH <sup>2</sup>                      | 0.041   |
| $r^2$                                | 0.001   |
| $d^2$                                | 0.000   |
| Т*рН                                 | 0.000   |
| T*r                                  | 0.043   |
| T*d                                  | 0.020   |
| r*d                                  | 0.012   |

### **Effects of Various Parameters**



Lower phenolics concentration in OMW after adsorption (C)



Lower Yield (Y, %) value



Higher adsorption capacity

## Max adsorption capacity:

 $T : 20^{\circ}C$ 

**pH** : 4.75

 $\mathbf{r} = 0.01 \, \mathrm{g/mL}$ 

 $C_0$  : 50 mg/L

1: 0.149 mm

### **Adsorption - Optimization**

| Optimal<br>D High<br>0,09327 Cur<br>Low | t(min)<br>60.0<br>5,0<br>5,0 | T(oC)<br>60.0<br>20,0<br>20,0 | pH<br>7.0<br>[4,0]<br>4,0 | r(g/ml)<br>0.030<br>[0,010]<br>0,010 | Co(mg/l)<br>500.0<br>[50,0]<br>50,0 | d(mm)<br>1,1800<br>[0,1490]<br>0,1490 | bsb<br>2.0<br>[1,0]<br>1,0 |
|-----------------------------------------|------------------------------|-------------------------------|---------------------------|--------------------------------------|-------------------------------------|---------------------------------------|----------------------------|
| Composite<br>Desirability<br>0,09327    |                              |                               |                           |                                      |                                     |                                       |                            |
| Y(%)<br>Minimum                         |                              |                               |                           |                                      |                                     |                                       |                            |
| Y = -259.412                            | 9                            |                               |                           |                                      |                                     |                                       |                            |
| d = 0,09327                             |                              | /                             |                           |                                      |                                     | /                                     |                            |

#### Biosorbent (bsb)

- 1: pomegranate peel
- 2: orange juice wastes

$$Yield = \frac{C - Co}{Co} 100$$

The phenolics concentration reduced by 2.6 times

$$y = -788 + 506d + 249(bsb) - 304383r^2 + 162Tr - 2T(bsb) + 1185ph r - 19ph(bsb) - 7283rd - 128d(bsb)$$

## Desorption

Adsorption mechanism: ion exchange

♦ Pomegranate peel powder - biosorbent

50% acetic acid
Desorption efficiency:
59.34%

Water
Desorption Efficiency:
13.04%

Alkaline water
Desorption Efficiency
67.31%

Adsorption mechanism: chemisorption

Orange juice waste powder - biosorbent

Alkaline water
Desorption Efficiency:

1.33%

Water
Desorption Efficiency:
2.17%

50% acetic acid
Desorption Efficiency:
5.33%

### Conclusions

✓ Banana peel and orange juice waste have proven to be promising materials for the removal of contaminants from olive mill wastewaters

reduction of phenolics concentration = 260%

- ✓ The adsorption process was very fast, and it reached equilibrium in < 60 min of contact
- ✓ The optimum adsorption conditions were:
  - T: 20°C
  - pH: 4
  - r: 0.01 g/mL
  - $C_0$ : 50 mg/L
  - d: 0.149 mm
  - t: 5 min
  - Pomegranate peel powder as biosorbent
- ✓ All the examined factors had a statistical significant effect on the adsorption capacity
- Desorption experiments showed an ion change adsorption for pomegranate peel and a chemisorption mechanism for orange waste
- ✓ Kinetic and equilibrium studies should be accomplished

## Thank you for your attention!



Team of food engineering....