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analysis coupled with evolved gas characterization



Introduction

Structural Waste in the Food 
System One of the major contributors to environmental 

degradation and GHG emissions [1]

Some Numbers:

 Almost 22% of total greenhouse gases emitted 
2010 [2]

[1] FAO “Energy - Smart” Food for People and Climate : Issue Paper 66 
(2011)

[2] Sims et al. Opportunities For Agri-Food Chains To Become Energy-
Smart (2015)

[3]
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Background

Apple seeds: a hidden 
resource Apple seed is a by-product of juice production 

[4]

 Abundant in the Italian region of South Tyrol 
[5]

 19 000 hectares of  dedicated area 
 50 % of the national
 15 % of the European  
 2 % of the global apple market 

 70 million tons produced yearly worldwide [6]

 25 - 35 % of the raw material weight is 
residue

[4] X. Yu et al., Proximate composition of the apple seed and 
characterization of its oil, Int. J. Food Eng. 3 (2007)
[5] J. de Meyer, Apple-producing family farms in South Tyrol: An 
agriculture innovation case study (2014) 
[6] C.A. Perussello et al. Valorization of Apple Pomace by Extraction of 
Valuable Compounds, Compr. Rev. Food Sci. Food Saf. 16 (2017)
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ScCO2



Background

Research questions

 What are the characteristics of residues after both treatments ?

 How the extraction affects sample thermal properties ?

 Can spent biomass after the extraction be further valorized thermochemically ?

Oil and 
Liposoluble 
compounds

Supercritical 
CO2



Materials and methods

Samples before and after 
extraction:• Proximate Analysis

• Ashes

• Moisture content

• Ultimate Analysis

•  Elemental Analyzer (CHNS)

• Fourier-Transformed Infrared analysis with 
Attenuated Total Reflectance (FT-IR / ATR)

• Thermal Analyses

• Calorimetric Bomb

• Thermogravimetric coupled with Fourier-
Transformed Infrared for Evolved Gases 
Analysis (TG / FT-IR / EGA)



Results

Elemental analysis

Before Extr. After Extr.
Moistu
re

% 5.42 ± 0.13 5.47 ± 
0.16

C %wtdb 53.50 ± 
0.17

46.90 ± 
0.23

H %wtdb 7.30 ± 0.01 6.30 ± 
0.04

N %wtdb 6.71 ± 0.15 9.30 ± 
0.10

S %wtdb 0.66 ± 0.12 0.60 ± 
0.03

O %wtdb 31. 80 36. 90
Ash %wtdb 3.50 ± 0.10 4.21 ± 

0.05

*db: dry basis
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Results

Preliminary assessment by 
FT-IR / ATR 

Before Extraction in Blue After Extraction in Green
asym. * = asymmetrical bond stretch                   sym.° = symmetrical bond 

stretch

Table Taken from [7] B.J. Lee et al.  Discrimination and prediction of the origin 
of Chinese and Korean soybeans using Fourier transform infrared 
spectrometry (FT-IR) with multivariate statistical analysis, PLoS One. 13 
(2018) 
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Results

Thermogravimetric analysis 

 Weight difference in relation to the 
Temperature

 Useful to physically characterize how a 
material reacts with temperature

 Using N2 is possible to replicate pyrolytic 
reactions

 Samples before and after extraction have 
been analyzed in air and N2 

 A FT-IR spectroscopy can be coupled to TGA 
to obtain real-time information about the 
evolved gases during thermochemical 
reactions 

Apple seeds before extraction analysed by TG in Air
(ID: Pre-Air)

TG

DTG

1st 
Peak

To end



Results

 Pre-Air

  Post-
Air

 Pre-N2

 Post-
N2



Results

Thermogravimetric analysis 

 Peak Temperatures

Differences N₂ Pre 
Vs Post °C
T° Onset - 11.2
T° First DTG Peak - 19.7
T° Second DTG Peak - 48.2

Differences Air Pre 
Vs Post °C
T° Onset - 26.8
T° First DTG Peak - 17.0
T° Second DTG Peak - 65.3
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Results

Thermogravimetric analysis 

 Mass Changes from total mass

%

Mass 
change 

1st 
peak

Mass 
chang
e to 
end

Residua
l Mass

Unburnt 
(residual - 

ashes)

Pre-Air 33.46 55.68 10.66 7.16
Post-
Air

28.72 58.19 13.09 8.88

Pre-N2 34.01 39.67 26.33 22.82
Post-N2 37.91 28.26 33.84 29.62

Differences Air Pre 
Vs Post %
First Peak - 4.74
To end 2.51
Residual mass 2.43
Unburnt 1.71
Differences N2 Pre 
Vs Post %
First Peak 3.90
To end - 11.41
Residual mass 7.51
Unburnt 6.80
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Results

TG/FT-IR/EGA in air

 Band at 3295 cm-1 corresponds to O–H stretching 
vibrations [9]

 Peaks at around 3000 cm-1 are due to the aliphatic 
saturated C–H stretching vibration [9]

 Bands between 1600 and 1800 cm-1 are indicative of 
free and esterified C=O groups [9]

 The peaks at about 1000 cm-1 are assigned to C–O–C 
linkage of lignocellulosics [9]

 Peaks at 877 cm-1 characterize β-glycosidic linkage of 
cellulose [9]

 Isocyanic acid peak (CHNO) at around 2250 cm-1 [8]

[8] NIST Standard Reference Database 69: NIST Chemistry WebBook
[9] Sidi-Yacoub et al. Characterization of lignocellulosic components in 
exhausted sugar beet pulp waste by TG/FTIR  analysis. J. of Thermal Analysis 
and Calorimetry (2019)



Results

200°C – 300°C

 Pre-Air

  Post-
Air

 Pre-N2

 Post-
N2
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 Pre-Air

  Post-
Air

 Pre-N2

 Post-
N2



Results

TG/FT-IR/EGA in N2

 C-H stretch below 3000 cm-1 in samples before 
extraction: Possible fatty acids in gas phase [8]

 In samples after extraction, peaks overlap at around   
  2300 cm-1 [8] 

 Evolution of gases at different temperatures in the 
C=O region (1600- 1800 cm-1 ) in post extracted 
samples

 Derivatives of Furan from carbohydrates 
[8] NIST Standard Reference Database 69: NIST Chemistry WebBook

 Befor
e 
Extr.

 Post 
Extr.



Conclusion

To recap:
 Apple seed as interesting resource for valued compounds

 Effect of extraction on thermochemical properties by means of TG/FT-IR/EGA
 Lipid extraction affects thermal properties, reducing HHV

 Increase in char yield in samples after extraction 

 Lipids volatilizes into gaseous fatty acids 

  Future research: Thermal consequences of further extracting water soluble compounds (e.g. polysaccharides,…)

Oil and 
Liposoluble 
compounds

Water soluble 
compounds



Thank you for your attention

Thermochemical valorization of spent apple seeds

Jacopo Paini: Jacopo.paini@natec.unibz.it

J. Paini, V. Benedetti, M. Scampicchio, M. Baratieri, F. Patuzzi
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