Freie Universität Bozen UNIDZ Libera Università di Bolzano Free University of Bolzano

Thermochemical valorization of spent apple seeds

Preliminary assessment by thermogravimetric analysis coupled with evolved gas characterization

J. Paini, V. Benedetti, M. Scampicchio, M. Baratieri, F. Patuzzi

Structural Waste in the Food

System major contributors to environmental **FIGURE ES.I.** Indicative shares of the approximately 10 GtCO₂-eq of total degradation and GHG emissions [1] greenhouse gases emitted by the global agri-food sector in 2010.

Sources: IPCC, 2014. 5th Assessment Report- Mitigation: Chapter 11, Agriculture forestry and other land use; Chapter 10, Industry; Chapter 8, Transport. FAO, 2011a.

Some Numbers:

 Almost 22% of total greenhouse gases emitted 2010 [2]

[1] FAO "Energy - Smart" Food for People and Climate: Issue Paper 66 (2011)

[2] Sims et al. Opportunities For Agri-Food Chains To Become Energy-Smart (2015)

Structural Waste in the Food

System major contributors to environmental degradation and GHG emissions [1]

Some Numbers:

31% of the food edible mass is left along the chain [3]

[1] FAO "Energy - Smart" Food for People and Climate: Issue Paper 66 (2011)

[3] Macarthur, E. Growth within: a circular economy vision for a competitive Europe. Ellen MacArthur Found. (2015)

FOOD WASTE 31% of food produced is lost or wasted

Structural Waste in the Food

System major contributors to environmental degradation and GHG emissions [1]

FOOD WASTE 31% of food produced is lost or wasted

31% of the food edible mass is left along the chain [3]

[1] FAO "Energy - Smart" Food for People and Climate: Issue Paper 66 (2011)

[3] Macarthur, E. Growth within: a circular economy vision for a competitive Europe. Ellen MacArthur Found. (2015)

Apple seeds: a hidden

- **FASPLE seed** is a by-product of juice production [4]
- Abundant in the Italian region of South Tyrol [5]
 - 19 000 hectares of dedicated area
 - 50 % of the national
 - 15 % of the European
 - 2 % of the global apple market
- 70 million tons produced yearly worldwide [6]
- 25 35 % of the raw material weight is residue

Apple seeds: a hidden

- **FASPLE seed** is a by-product of juice production [4]
- Abundant in the Italian region of South Tyrol
 [5]
 - 19 000 hectares of dedicated area
 - 50 % of the national
 - 15 % of the European
 - 2 % of the global apple market
- 70 million is produced yearly worldwide [6]
 25 of valuable material weight is residue
 compounds by ScCO₂

Research questions

- What are the characteristics of residues after both treatments ?
- How the extraction affects sample thermal properties ?
- Can spent biomass after the extraction be further valorized thermochemically ?

Materials and methods

Samples before and after extraction: while Analysis

- Ashes
- Moisture content
- Ultimate Analysis
 - Elemental Analyzer (CHNS)
- Fourier-Transformed Infrared analysis with Attenuated Total Reflectance (FT-IR / ATR)
- Thermal Analyses
 - Calorimetric Bomb
 - Thermogravimetric coupled with Fourier-Transformed Infrared for Evolved Gases Analysis (TG / FT-IR / EGA)

		Before Extr.	After Extr.
Moistu	%	5.42 ± 0.13	5.47 ±
re			0.16
C	%wt _{db}	53.50 ±	$46.90 \pm$
		0.17	0.23
Н	%wt _{db}	7.30 ± 0.01	6.30 ±
			0.04
Ν	%wt _{db}	6.71 ± 0.15	9.30 ±
			0.10
* S : dry basis	%wt _{db}	0.66 ± 0.12	0.60 ±
			0.03
0	%wt _{db}	31.80	36.90
Ash	%wt _{db}	3.50 ± 0.10	4.21 ±
	3.0		0.05

Elemental analysis

		Before Extr.	After Extr.
Moistu	%	5.42 ± 0.13	5.47 ±
re			0.16
С	%wt _{db}	53.50 ±	46.90 ±
		0.17	0.23
Н	%wt _{db}	7.30 ± 0.01	6.30 ±
			0.04
Ν	%wt _{db}	6.71 ± 0.15	9.30 ±
			0.10
* State: dry basis	%wt _{db}	0.66 ± 0.12	0.60 ±
			0.03
0	%wt _{db}	31.80	36.90
Ash	%wt _{db}	3.50 ± 0.10	4.21 ±
	35		0.05

Elemental analysis

	Before Extr.	After Extr.
%	5.42 ± 0.13	5.47 ±
		0.16
%wt _{db}	53.50 ±	46.90 ±
	0.17	0.23
%wt _{db}	7.30 ± 0.01	6.30 ±
		0.04
%wt _{db}	6.71 ± 0.15	9.30 ±
		0.10
%wt _{db}	0.66 ± 0.12	0.60 ±
		0.03
%wt _{db}	31.80	36.90
%wt _{db}	3.50 ± 0.10	4.21 ±
		0.05
	% %wt _{db} %wt _{db} %wt _{db} %wt _{db}	Before Extr. $\%$ 5.42 ± 0.13 $\%wt_{db}$ 53.50 ± 0.17 $\%wt_{db}$ 7.30 ± 0.01 $\%wt_{db}$ 6.71 ± 0.15 $\%wt_{db}$ 0.66 ± 0.12 $\%wt_{db}$ 31.80 $\%wt_{db}$ 3.50 ± 0.10

Higher Heating Value

		Before Extr.	After Extr.
HHV	J/g	22572 ± 84	18241 ± 35

Elemental analysis

		Before Extr.	After Extr.
Moistu	%	5.42 ± 0.13	5.47 ±
re			0.16
С	%wt _{db}	53.50 ±	46.90 ±
		0.17	0.23
Н	%wt _{db}	7.30 ± 0.01	6.30 ±
			0.04
Ν	%wt _{db}	6.71 ± 0.15	9.30 ±
*dh: dry hasis			0.10
S	%wt _{db}	0.66 ± 0.12	0.60 ±
			0.03
0	%wt _{db}	31.80	36.90
Ash	%wt _{db}	3.50 ± 0.10	4.21 ±
			0.05

Higher Heating Value

		Before Extr.	After Extr.
HHV	J/g	22572 ± 84	18241 ± 35

- 19% HHV difference Before Vs After Extr.

Preliminary assessment by FT-IR / ATR

Wavenumber (cm ⁻¹)	Vibration	Suggested molecular assignment	
3293	N-H and O-H stretching	Polysaccharides and proteins	
3009	C=H stretching	Unsaturated lipids	25
2923	C-H stretching (asym. *)	Mainly lipids, proteins and carbohydrates	C
2854	C-H stretching (sym.°)	Mainly lipids, proteins and carbohydrates	
1744	C=O stretching	Lipids	000
1645	C-O, C-N stretching	Amide I (protein)	
1538	C-N stretching N-H bending	Amide II (protein)	Units 0.15
1456	CH ₂ bending	Lipids	Ř
1398	CH₃ bending COO⁻ stretching (sym.°)	Proteins and fatty acids	010 010
1237	PO ²⁻ stretching (asym. *)	Phospholipids (mainly phosphatidylcholine)	
1159	CO-O-C stretching (asym. *) CO stretching	Esters, oligosaccharides, triacyclglycerols	0.05
1060	PO ²⁻ stretching (sym.°) CO stretching	Nucleic acids Starch	e
≈600	O-C-O bending	CO ₂	0

asym. * = asymmetrical bond stretch stretch sym.° = symmetrical bond

Table Taken from [7] *B.J. Lee et al. Discrimination and prediction of the origin of Chinese and Korean soybeans using Fourier transform infrared spectrometry (FT-IR) with multivariate statistical analysis, PLoS One. 13 (2018)*

Results

Before Extraction in Blue After Extraction in Green

Preliminary assessment by FT-IR / ATR

Navenumber (cm ⁻¹)	Vibration	Suggested molecular assignment		
3293	N-H and O-H stretching	Polysaccharides and proteins		
3009	C=H stretching	Unsaturated lipids	25	
2923	C-H stretching (asym. *)	Mainly lipids, proteins and carbohydrates	Ö	
2854	C-H stretching (sym.°)	Mainly lipids, proteins and carbohydrates		
1744	C=O stretching	Lipids	.20	
1645	C-O, C-N stretching	Amide I (protein)	0	
1538	C-N stretching N-H bending	Amide II (protein)	Jnits).15	
1456	CH ₂ bending	Lipids	L C	
1398	CH₃ bending COO ⁻ stretching (sym.°)	Proteins and fatty acids	0.10	
1237	PO ²⁻ stretching (asym. *)	Phospholipids (mainly phosphatidylcholine)		
1159	CO-O-C stretching (asym. *) CO stretching	Esters, oligosaccharides, triacyclglycerols	0.05	
1060	PO ²⁻ stretching (sym.°) CO stretching	Nucleic acids Starch	8	
≈600	O-C-O bending	CO ₂	Ö	2500

asym. * = asymmetrical bond stretch

sym.° = symmetrical bond

stretch

Table Taken from [7] *B.J. Lee et al. Discrimination and prediction of the origin of Chinese and Korean soybeans using Fourier transform infrared spectrometry (FT-IR) with multivariate statistical analysis, PLoS One. 13 (2018)*

Results

Before Extraction in Blue After Extraction in Green

Results

Thermogravimetric analysis

- Weight difference in relation to the Temperature
- Useful to physically characterize how a material reacts with temperature
- Using N₂ is possible to replicate pyrolytic reactions
- Samples before and after extraction have been analyzed in air and N₂
- A FT-IR spectroscopy can be coupled to TGA to obtain real-time information about the evolved gases during thermochemical reactions

Apple seeds before extraction analysed by TG in Air (ID: Pre-Air)

Results

Thermogravimetric analysis

Peak Temperatures

T℃	Onset	1st peak	2nd peak
Pre-Air	277.6 ±3.5	340.3 ±0.7	591.3 ±7.9
Post-Air	250.8 ±2.6	323.3 ±1.6	526.0 ±5.8
Pre-N ₂	282.1 ±2.6	346.0 ±0.6	393.4 ±1.3
Post-N ₂	270.9 ±0.7	326.3 ±0.1	345.3 ±0.6

Differences Air Pre	
Vs Post	°C
T° Onset	- 26.8
T° First DTG Peak	- 17.0
T° Second DTG Peak	- 65.3

Differences N ₂ Pre	
Vs Post	°C
T° Onset	- 11.2
T° First DTG Peak	- 19.7
T° Second DTG Peak	- 48.2

Thermogravimetric analysis

Peak Temperatures

T℃	Onset	1st peak	2nd peak
Pre-Air	277.6 ±3.5	340.3 ±0.7	591.3 ±7.9
Post-Air	250.8 ±2.6	323.3 ±1.6	526.0 ±5.8
Pre-N ₂	282.1 ±2.6	346.0 ±0.6	393.4 ±1.3
Post-N ₂	270.9 ±0.7	326.3 ±0.1	345.3 ±0.6

Differences Air Pre	
Vs Post	°C
T° Onset	- 26.8
T° First DTG Peak	- 17.0
T° Second DTG Peak	- 65.3

Differences N ₂ Pre	
Vs Post	°C
T° Onset	- 11.2
T° First DTG Peak	- 19.7
T° Second DTG Peak	- 48.2

Thermogravimetric analysis

Mass Changes from total mass

%	Mass change 1st peak	Mass chang e to end	Residua I Mass	Unburnt (residual - ashes)
Pre-Air	33.46	55.68	10.66	7.16
Post- Air	28.72	58.19	13.09	8.88
Pre-N ₂	34.01	39.67	26.33	22.82
Post-N ₂	37.91	28.26	33.84	29.62

Differences Air Pre	
Vs Post	%
First Peak	- 4.74
To end	2.51
Residual mass	2.43
Unburnt	1.71
Differences N ₂ Pre	
Vs Post	%
First Peak	3.90
To end	- 11.41
Residual mass	7.51
Unburnt	6.80

Thermogravimetric analysis

Mass Changes from total mass

%	Mass change 1st peak	Mass chang e to end	Residua I Mass	Unburnt (residual - ˈashes)
Pre-Air	33.46	55.68	10.66	7.16
Post- Air	28.72	58.19	13.09	8.88
Pre-N ₂	34.01	39.67	26.33	22.82
Post-N ₂	37.91	28.26	33.84	29.62

Differences Air Pre	
Vs Post	%
First Peak	- 4.74
To end	2.51
Residual mass	2.43
Unburnt	1.71
Differences N ₂ Pre	
Vs Post	%
First Peak	3.90
To end	- 11.41
Residual mass	7.51
Unburnt	6.80

TG/FT-IR/EGA in air

- Band at 3295 cm⁻¹ corresponds to O–H stretching vibrations [9]
- Peaks at around 3000 cm⁻¹ are due to the aliphatic saturated C-H stretching vibration [9]
- Bands between 1600 and 1800 cm⁻¹ are indicative of free and esterified C=O groups [9]
- The peaks at about 1000 cm⁻¹ are assigned to C–O–C linkage of lignocellulosics [9]
- Peaks at 877 cm⁻¹ characterize β-glycosidic linkage of cellulose [9]
- Isocyanic acid peak (CHNO) at around 2250 cm⁻¹[8]

 [8] NIST Standard Reference Database 69: NIST Chemistry WebBook
 [9] Sidi-Yacoub et al. Characterization of lignocellulosic components in exhausted sugar beet pulp waste by TG/FTIR analysis. J. of Thermal Analysis and Calorimetry (2019)

Results

Wavenumber [cm⁻¹]

Wavenumber [cm⁻¹]

TG/FT-IR/EGA in N_2

- C-H stretch below 3000 cm⁻¹ in samples before extraction: Possible fatty acids in gas phase [8]
- In samples after extraction, peaks overlap at around 2300 cm⁻¹ [8]
- Evolution of gases at different temperatures in the C=O region (1600- 1800 cm⁻¹) in post extracted samples
- Derivatives of Furan from carbohydrates

[8] NIST Standard Reference Database 69: NIST Chemistry WebBook

Conclusion

To recap:

- Apple seed as interesting resource for valued compounds
- Effect of extraction on thermochemical properties by means of TG/FT-IR/EGA
 - Lipid extraction affects thermal properties, reducing HHV
 - Increase in char yield in samples after extraction
 - Lipids volatilizes into gaseous fatty acids
- Future research: Thermal consequences of further extracting water soluble compounds (e.g. polysaccharides,...)

Thank you for your attention

Thermochemical valorization of spent apple seeds

J. Paini, V. Benedetti, M. Scampicchio, M. Baratieri, F. Patuzzi

Jacopo Paini: Jacopo.paini@natec.unibz.it