

Tire pyrolysis char as tar cracking catalyst for gasification of RDF in dual pyrolysisgasification reactor

Jakub Husár, Patrik Šuhaj, Juma Haydary, Katarína Gazdová

Slovak University of Technology

Presentation summary

- Introduction
- Preparation and properties of studied tire pyrolysis char catalyst
- Goals
- Tar cracking activity test
- RDF gasification experiments
- Conclusion

Pyrolysis

- Thermochemical process, no oxidizer
- Products
 - Solid char solid fuel, catalyst support, adsorbent
 - Liquid tar, bio-oil liquid fuel
 - Gaseous pyrolysis gas gaseous fuel, hydrogen separation

Gasification

- Thermochemical process based on partial oxidation of the feed
- Gasifying agents: air, oxygen, steam, CO₂
- Main product synthesis gas
 - Heat and electricity production
 - Hydrogen separation
 - Synthesis of organic compounds (methanol)
- Side products
 - Ash incombustible fraction of them feed, can contain unreacted carbon
 - Tar undesirable product, impurity in synthesis gas

- Complex mixture of condensable hydrocarbons and their derivates
- Causes fouling, corrosion and catalyst poisoning in downstream processing units
- Tar removal
 - Physical means: condensation, absorption, filtration expensive
 - Chemical means: thermal decomposition, catalytic decomposition

Refuse-derived fuel

Made from MSW by removing incombustibles and biodegradable waste

Fraction	Paper	Foil	Plastics	Textile	RDF
RDF composition [wt. %]	63.17	15.78	19.1	1.94	100
Ultimate analysis [wt. % dry basis]					
С	35.0	76.5	66.4	50.3	47.8
H	5.0	12.8	9.16	6.4	7.05
Ν	0.05	0.1	0.94	3.3	0.29
S	0.08	0.12	0.35	0.33	0.14
Ο	39.4	1.78	9.42	31.3	27.6
Cl	0.07	0.09	3.53	1.8	0.08
Ash [wt. % dry basis]	20.4	8.69	10.2	6.6	17.0

Tyre pyrolysis char

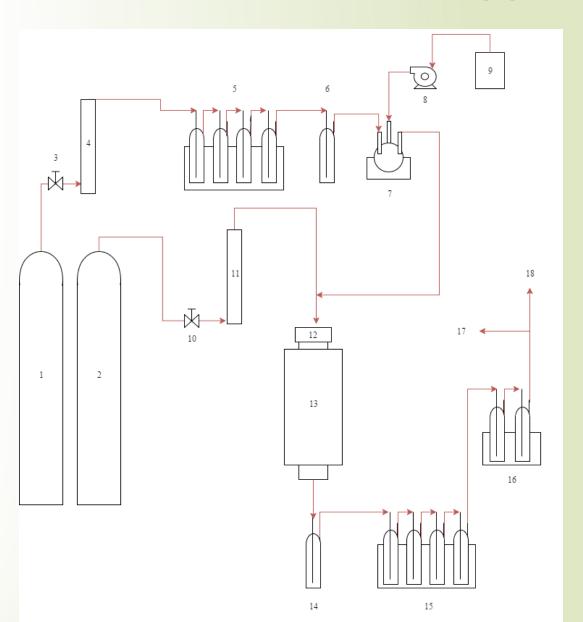
- Suitable material for catalyst production (catalyst or catalyst support)
 - High specific surface area (requires activation)
 - High metal content (mostly Zn)
 - Combustible (advantage and disadvantage at the same time)
 - Can be impregnated with Ni, Fe and other catalytically active metals

FCHPT

Catalyst preparation procedure

- 1. Pelletizing of raw char into pellets with a diameter of 5 mm and length of 5 mm
- 2. Drying in oven at 105 °C for 6 h
- 3. Carbonization in CO₂ atmosphere at 800 °C for 4 h
- 4. Impregnation with $Ni(NO_3)_2$ solution 2 wt. % Ni loading
- 5. Drying in oven at 105 °C for 6 hours
- 6. Heat treatment in N₂ atmosphere at 800 °C for 2 h

	S _{BET} [m₂/g]	v _{pore} [cm³/g]	d _{pore} [nm]
Raw char	45.0	0.394	24.6
Carbonized char	72.4	0.328	16.9
Impregnated char	66.9	0.315	18.4
Finalized catalyst	88.4	0.328	16.3



Goals

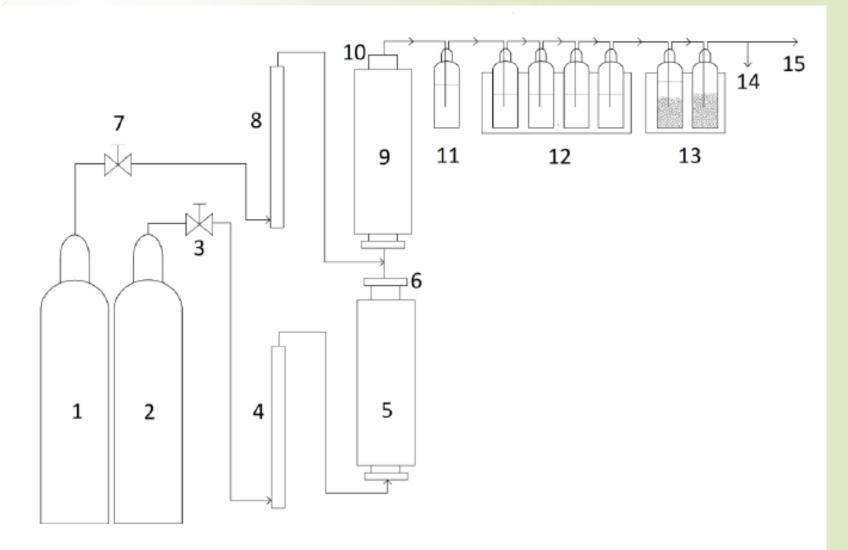
- To test the activity of the catalyst on model tar compound toluene
- 2. To test the activity of the catalyst on real tar from RDF gasification
- **3**. To evaluate the impact of air flow and gasifier temperature on total tar yield and hydrogen content in the product gas

Experiments with toluene - apparatus

HPT

Experiments with toluene – conditions

- Reactor temperature 800 °C
- N₂ flow 22.5 L/h
- CO₂ flow 2.5 L/h
- Toluene feed 3 mL/h 2 vol. % in feed gas
- Catalyst mass no catalyst or 10 g
- Experiment duration 2 h



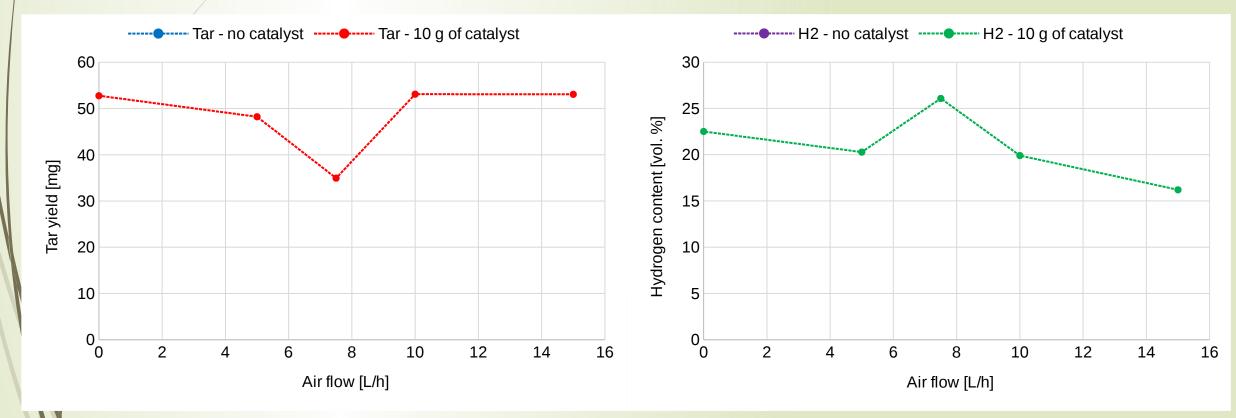
Experiments with toluene - results

	No catalyst	carbonized	10 g finalized
		catalyst	catalyst
Toluene conversion [wt. %]	72.7	93.5	94.0
Liquid yield [wt. %]	70.7	50.8	42.1
Coke yield [wt. %]	-	27.2	14.9
Gas yield [wt. %]	29.3	22.0	43.0

	No catalyst	10 g carbonized catalyst	10 g finalized catalyst
Methane [vol. %]	0.6	0.4	0.5
Other hydrocarbons [vol. %]	0.05	0.01	0.01
CO ₂ [vol. %]	8.6	10.6	6.9
H ₂ [vol. %]	1.3	3.5	5.4
CO [vol. %]	0.8	3.9	7.1
N ₂ [vol. %]	88.7	81.6	80.1

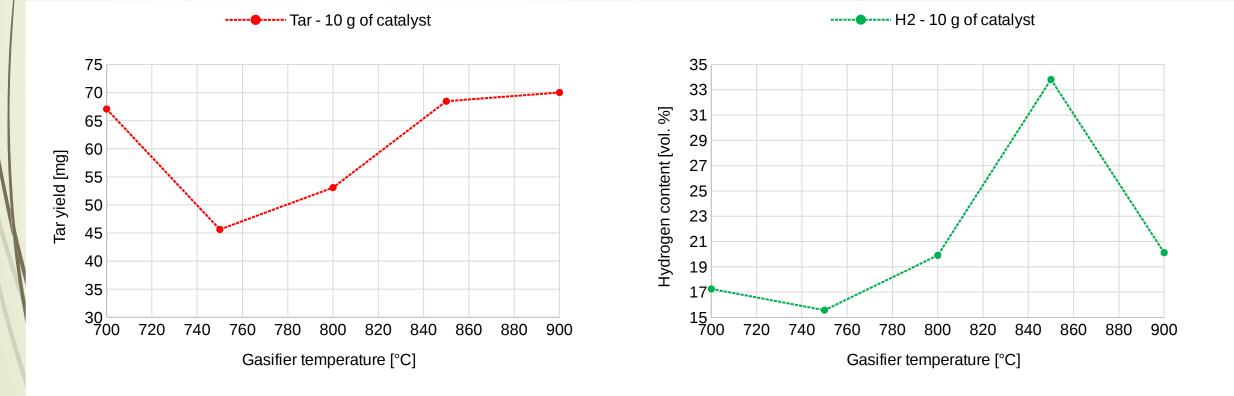
Dual pyrolysis-gasification reactor experiments - apparatus

HPT



Dual pyrolysis-gasification reactor experiments - conditions

- Pyrolysis reactor 550 °C
- Gasification reactor 700-900 °C
- N₂ flow 15 L/h
- Air flow 0-15 L/h
- Catalyst mass none or 10 g of finalized catalyst
- RDF 10 g
- Experiment duration 1 h


Dual pyrolysis-gasification reactor experiments - results

Gasifier temperature – 800 °C

Dual pyrolysis-gasification reactor experiments - results

Air flow - 10 L/h

Conclusion

- Tire pyrolysis char is a suitable catalyst and catalyst support which promotes tar decomposition
- Nickel loading increases catalyst activity and decreases coke formation of the surface of the catalyst
- In experiments with RDF gasification, catalyst presence decreased total tar yield by up to 69 %
- Lowest tar yield was achieved at gasifier temperature of 750 °C and air flow of 7.5 L/h
- The highest H₂ production was achieved at 850 °C
- Gasifier operation temperature above activation temperature of the catalyst leads to removal of volatiles from the catalyst. Thus, tar is produced from the catalyst itself.