Genome-centric resolution of anaerobic digestion microbiome in biogas reactors fed with Long Chain Fatty Acids

Panagiotis G. Kougias¹,²,³, Laura Treu³,⁴, Stefano Campanaro⁴, Xinyu Zhu³, Irini Angelidaki³

¹ Institute of Soil and Water Resources, Hellenic Agricultural Organization – Demeter, 57001 Thermi-Thessaloniki, Greece
² Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
³ Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, Kgs. Lyngby DK-2800, Denmark.
⁴ Department of Biology, University of Padova, Via U. Bassi 58b, 35121 Padova, Italy.
Anaerobic digestion: State of the art

Many different aspects and problems affecting biogas reactors are directly connected with microbial activity:

- Ammonia rich substrates
- Biogas upgrade
- Foaming
- Temperature disturbances
- Cellulosic and lignocellulosic feedstocks
Experimental design

Case Study 1
- Cattle manure
- Shock Load

Case Study 2
- Cattle manure
- Cattle manure + LCFA
- Change of influent composition
Approach and methodology

1. Biogas Reactors
2. DNA extraction
3. Shotgun Sequencing
4. Bioinformatic Analyses
Results

Kougias et al., 2016. *Scientific reports, 6*, p.28810.
Results
Results

Eu01 Methanoculleus sp. DTU006
Eu04 Methanosarcina sp. DTU009
Results

- Genomes belonging to *Methanoculleus* genus were downloaded from NCBI microbial genome database and were compared using PhyloPhIAn.
Results (novel species)

Candidatus Methanoculleus thermohydrogenotrophicum

<table>
<thead>
<tr>
<th>GENOME CHARACTERISTICS</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome size [bp]</td>
<td>2.15 Mbp</td>
</tr>
<tr>
<td>GC content</td>
<td>59.20%</td>
</tr>
<tr>
<td>Scaffold N50 [bp]</td>
<td>17,178</td>
</tr>
<tr>
<td>Number of contigs</td>
<td>503</td>
</tr>
<tr>
<td>Number of protein-encoding genes</td>
<td>2,297</td>
</tr>
<tr>
<td>Total number of essential genes</td>
<td>32</td>
</tr>
<tr>
<td>Estimated completeness % (CheckM)</td>
<td>92.70%</td>
</tr>
<tr>
<td>Estimated contamination level % (CheckM)</td>
<td>2.30%</td>
</tr>
</tbody>
</table>
Conclusions

LCFA inhibition is a reversible phenomenon
Biogas microbiome unveiled
Syntrophic interactions
Novel species were identified
New opportunities for microbial resource management
Revised this week!

The anaerobic digestion microbiome: a collection of 1600 metagenome-assembled genomes shows high species diversity related to methane production

Dr. Stefano Campanaro, Dr. Laura Treu, Dr. Luis M Rodriguez-R, Dr. Adam Kovalovszki, Dr. Ryan M Ziels, Dr. Irena Maus, Dr. Xinyu Zhu, Dr. Panagiotis G. Kougias, Dr. Arianna Basile, Dr. Gang Luo, Dr. Andreas Schlüter, Dr. Konstantinos T. Konstantinidis, Dr. Irini Angelidaki

doi: https://doi.org/10.1101/680553
Thank you for your attention

This project has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under grant agreement No580.

This work was supported by Innovationfonden under the project “SYMBIO – Integration of biomass and wind power for biogas enhancement and upgrading via hydrogen assisted anaerobic digestion”, contract 12-132654.
Teamwork

Stefano Campanaro
Assoc. Prof
Padova University

Panagiotis Kougias
Senior Researcher
HAO-DEMETER

Laura Treu
Researcher
Padova University

Irini Angelidaki
Professor
DTU-ENV

Xinyu Zhu
PostDoc