expansive clays.

Presenting author: Adela P. Galvín.

Authors: A.P. Galvín¹, A. López-Uceda¹, A. Barbudo¹, M. Cabrera¹, J. Rosales¹, A. Lozano-Lunar¹

Department of Construction Engineering, University of Córdoba, Spain 7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT 26-29 June 2019, Heraklion, Crete Island, Greece

INTRODUCTI ON

THE PRIORITY IS THE SUSTAINABILITY

Engineering and construction sectors are key productive segments to control

It makes necessary to search viable and eco-friendly alternatives with the environment.

INTRODUCTI ON

ECO-FRIENDLY ALTERNATIVES

- These initiatives are extendable in the stabilization of soils in civil engineering
- The stability of infrastructures depends on the stability of the soil in which they are

Supported If the soil were unstable

expansive or present poor technical properties

it should be discarded

But

if the expansive soil is stabilized on site?

In addition

If we do not use chemical additives as stabilizers but waste or a by-product

> the proposal is **doubly sustainable** It is starting point of the present study

SOIL STABILISATION

petroleum

emulsions

resins || polymers

- Traditionally, stabilisation of soils has been achieved by mixing with chemical additives with pozzolanic properties as cement or lime
- Nowadays many studies have been focused on reduce the by adding non-traditional stabilizers such as:

asphalt

enzymes

by-products as

another eco-friendlier option is possible vegetable wastes

Green policies are necessary for implementation of sustainable solutions prioritizing the use of renewable energies and buildings compatible with the environment

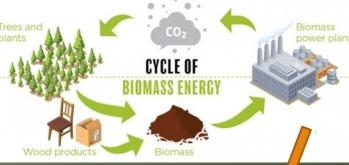
chemical additives

INTRODUCTI ON

BIOMASS IN ANDALUSIA

- Andalusia has a large historic agricultural tradition: crops such as olives, citrus or grapevine have been drivers of the regional economy.
- Thus, a large amount of vegetable wastes are produced:

4,6 MT of agricultural wastes 1,3 MT of forest wastes


- Andalusia leads the sector of production of electricity from biomass combustion
- 18 electric biomass cogeneration use the vegetable wastes as biomass-biofuel.
- However, the processing and disposal of BBA is actually an environmental and economic issue

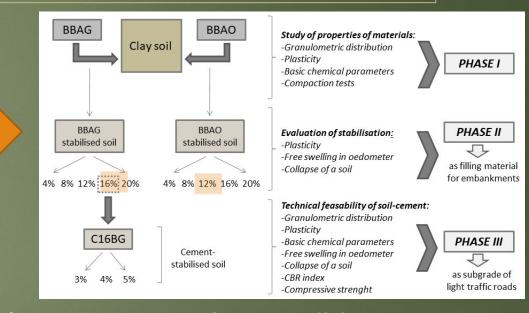
Biomass bottom ashes

INTRODUCTI

ON

INTRODUCTI ON

6


MAIN OBJECTIVE OF THE PRESENT RESEARCH

Could we substitute chemical agents by residues with stabilizing potential?

OUR PREVIOUS WORK [] PHYSICAL ASPECTS

Physical and mechanical properties were evaluated.

- Optimum mixtures: 16% BBAG and 12% BBAO

PRESENT WORK [] ENVIRONMENTAL ASPECTS

bottom ashes) when they are used as soil stabilisers.

How are the release levels of pollutant?

INTRODUCTI ON

MAIN OBJECTIVE OF THE PRESENT RESEARCH

What is the effect of different conditions between lab-on site?

- When materials are tested by conventional leaching tests:
 - The exposition to the leachant is high and continuous
 - The material is not physically altered
- However, when construction materials are used at work:
 - The exposition to the leachant is not continuous [] rain episod
 - The material is compacted for increasing its bearing capacity.

 Comparative between release levels under laboratory / at work conditions

MATERIALS

8

BIOMASS BOTTOM ASH

Two BBA come from the combustion of the following biomass mixtures, were studied:

BBAO

33% olive tree + 33% olive oilcake + 33% vegetable waste from olive oil industries

BBAG 70% seed grape + 30% oil cake

Basic characterisation:

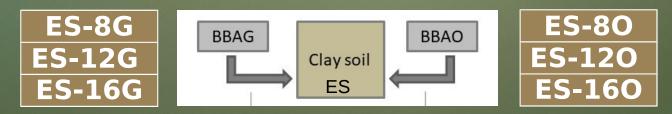
		BBAG	BBAO
Density-SSD (kg/m ³)		1.75	1.80
Water absorption (%)		37.00	28.40
Sand equivalent		72	49
Organic matter conte	nt (%)	1.29	6.55
		0.037 -	0.046 -
SiO ₂ /Na ₂ O (at 24, 48, 3	72 h)	0.060 -	0.072 -
		0.079	0.088
Soluble sulphate cont (SO ₃ %)	ent	0.67	0.75
	Na	1.28	1.67
	Κ	9.49	15.35
	Ca	16.37	20.15
Elemental content	Mg	2.36	4.64
(%)	Fe	1.57	2.52
(70)	Si	18.78	48.88
	Al	1.63	2.02
	Mn	0.05	0.04
	S	0.12	0.75
e is characterized by an av	heating value	5.31	

Olive oil cake is characterized by an average heating value around 21,000 kJ/kg (wood 17,000 kJ/kg)

MATERIALS

9

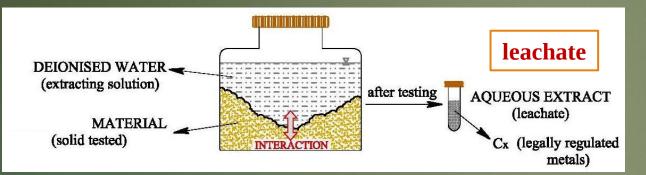
EXPANSIVE CLAY SOIL (ES)


Basic characterisation:

- The soil studied is a clayey expansive soil obtained during the construction works of the encirclement road west of Cordo FS
- Basic characterisation:
 - plastic index (PI): 30.30
 - Free swelling: 11.54 %
 - classified as high plastic clay-CH

(according to ASTM D2487-11 of Unified Soil Classification System, USCS).

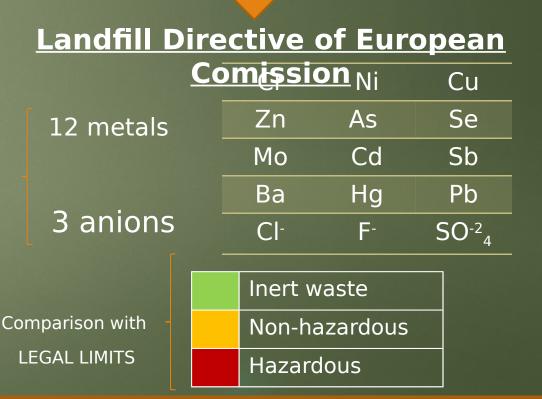
Mixtures of expansive soil (ES) and ashes (BBAG and BBAO): 8%, 12% and 16%


Real commercial grain size

EXPERIMENT AL METHODS 1

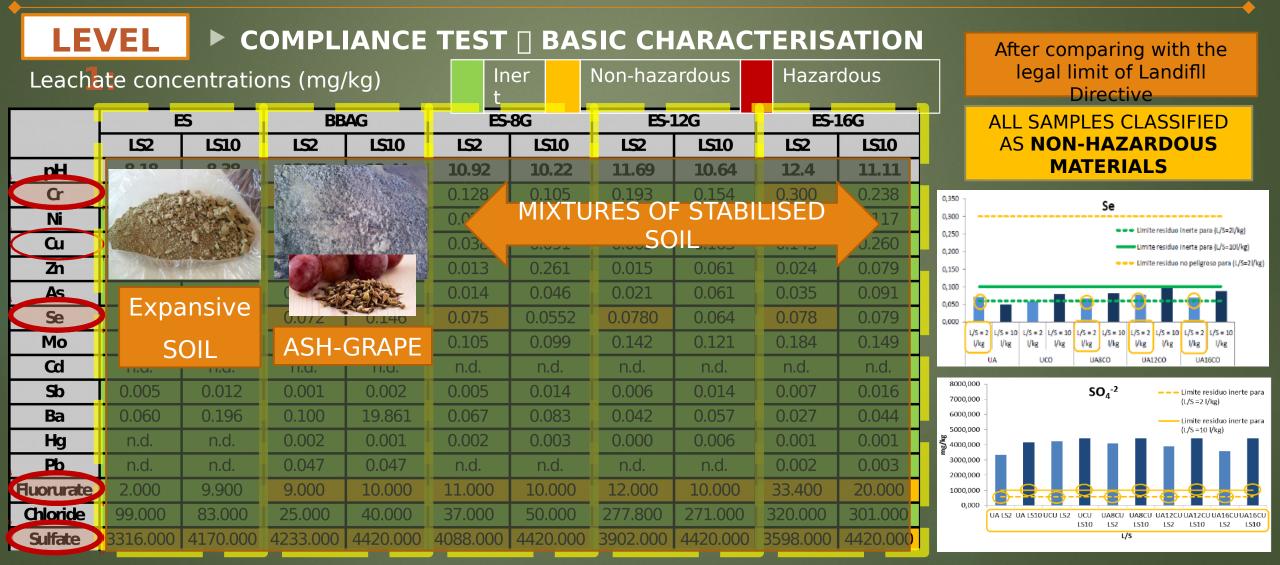
BASIC CHARACTERISATION

Leaching as a method of characterisation of pollutan release of hazardous elements.



L/S ratio = LIQUID / SOLID (I/kg)

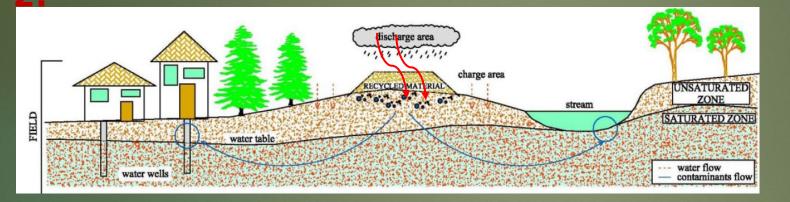
Metals [] inductively coupled plasma mass spectrometry Anions [] ion chromatography (UNE-EN ISO 10304-1: 2009)



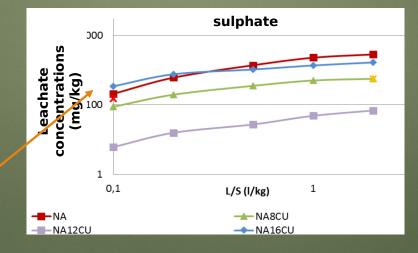
List of hazardous elements?

RESULTS AND DISCUSSION 12

RESULTS AND DISCUSSION 13


RESULTS AND DISCUSSION 14

DATA FROM LEACHING TESTS


LEVEL PERCOLATION TEST AT LONG TERM?

Material used in civil works

Legal limit of Landifll Directive At L/S = 0.1 l/kg

Concentration curves from conventional leaching columna test

RESULTS AND DISCUSSION 15

LEVEL PERCOLATION TEST AT LONG TERM?											
2.											STABILISE
	ES	ES-8G	ES-12G	ES-16G	STABILISE		ES	ES-80	ES-120	ES-160	D SOIL
	LS0.1	LS0.1	LS0.1	LS0.1	D SOIL		LS0.1	LS0.1	LS0.1	LS0.1	with
Cr	0.000	0.000	0.000	0.000	with	G	0.000	0.002	0.001	0.002	OLIVE
Ni	0.002	0.003	0.006	0.012	GRAPE	Ni	0.002	0.011	0.009	0.009	
Cu	0.010	0.010	0.020	0.040	ASH	Cu	0.000	0.000	0.000	0.000	ASH
Zn	0.073	0.003	0.003	0.004		Zn	0.000	0.010	0.020	0.012	
As	0.0003	0.002	0.002	0.003		As	0.0100	0.060	0.050	0.024	
Se	0.0003	0.000	0.0002	0.003		Se	0.0000	0.000	0.0003	0.000	
Мо	0.000	0.000	0.000	0.01		Мо	0.003	0.016	0.013	0.0156	
Cd	0.000	0.000	0.000	0.000		Cd	0.002	0.004	0.003	0.005	
Sb	0.002	0.000	0.001	0.0003		Sb	0.001	0.000	0.000	0	
Ba	0.0021	0.001	0.008	0.0015		Ba	0.0002	0.000	0.000	0.0001	
Hg	0.000	0.000	0.000	0.000		Hg	0.000	0.0001	0.0001	0.0001	
Pb	0.001	0.000	0.000	0.000		Pb	0.073	0.036	0.002	0.002	
Fluorurate	0.050	0.050	0.170	0.090		Fluorurate	0.050	1.150	1.150	0.250	
Chloride	2.920	0.940	0.110	9.800		Chloride	2.920	46.000	39.500	20.850	
Sulfate	208.000	88.000	90.700	343.000		Sulfate	208.000	423.000	292.000	176.000	
		INE MATEF		NON- HAZARDO S MATERIAI					I-HAZARD MATERIAL		

RESULTS AND DISCUSSION 16

RESULTS AND DISCUSSION 17

3:	ES-12G	CON	DITIC ES-160	DNS	Gulabata	
	LS0.1		LS0.1		Sulphate	
Gr	0.0099	Gr	0.0012		Leachate concentrations (mg/kg)	
Ni	0.0015	Ni	0.0071	Reduction on	-eachate centratic (mg/kg)	
Cu	0.0039	Cu	0.0000	release	g/k ch	
Zn	0.0026	Zn	0.0090		Cer cer	*
As	0.0007	As	0.0129	levels		
Se	0.0039	Se	0.0010	INERT	0	
Мо	0.0091	Мо	0.0108	MATERIAL	00	
b	0.0000	bC	0.0021	S	0,1	1
Sb	0.0000	Sb	0.0000			L/S (l/kg)
Ba	0.0045	Ba	0.0001		NA16CO	
Hg	0.0000	Hg	0.0002		upper	lower
Pb	0.0000	Pb	0.0011			
Fluorurate	0.1420	Fluorurate	0.0011			
Chloride	0.2450	Chloride	0.9830			
Sulfate	86.0000	Sulfate	76.5000			
STABIL SOI BBAG	ISED	STABIL SOI BBAC	ISED			

CONCLUSION S

- Eco-friendly agents for stabilizing of expansive soils can be used in civil infraestructures
- According to compliance test all mixtures were classify as NON-HAZARDOUS
- When materials are tested by percolation test simulating the percolation of rain through a granular layer [] concentration levels were reduced
- When materials are compacted as occurs in civil infrastructures [] concentration levels were even lower
- Release levels are directly related with:
 - the density and porosity of the material (influenced by the compaction stage)
 - Contact time water-aggregate

In materials used in civil infrastructures as roads

THE POLLUTANT POTENTIAL COULD BE OVERESTIMATE WHEN ON-SITE CONDITIONS ARE NOT TAKEN INTO ACCOUNT

> MITIGATING THEIR POTENTIAL USE AS ECO-STABILISER

THANK YOU FOR YOUR ATTENTION

Assessment of environmental aspects of using biomass bottom ashes as stabilising agent of expansive clays.

Presenting author: Adela P. Galvín.

"The greatest threat to our planet is the belief that someone else will save it." Robert Swan

Alpine skier. He is currently an advocate for the protection of Antarctica and renewable energy.

