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1. Introduction

In order to meet the global and local
bioenergy needs, to address a sustainable
forest ~management and  promote
environmentally friendly practices, woody
biomass turns into a highly valued raw
material able to be cropped sustainably in
large quantities around the world.

BINDING OF CO,

PULP BASED PRODUCTS
CHEMICALS

RECYCLING

SUSTAINABLE FORESTRY

Figure 1. Woody biomass Cycle (IEA Bioenergy, 2018)
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1. Introduction

Energy from Biomass

24,49%

4 % of industrialized countries energy

65,31%
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B Woody Biomass ® Municipal Solid Waste = Agricultural Waste ]
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Figure 2. Energy share supplied by renewable resources esi Industrial Commercial
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1. Introduction

[ Combustion } { Pyrolysis J [ Gasification }
/ Heat \ /Bio-char/ Bio-oil / Fuel\ / Fuel Gas / \
Boilers and Gas Heat
stoves Metallurgy, engines, Gas Gas turbine,
[@ g tune steam turbine

Temperature: 500 °C - Fast
. _Qo
Excess of c\)/)élygen. 5-8% 400 °C - Slow
o Residence time: 1 second - Particle size: 0.5 -1 cm
Temperature: <900°C .
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10 - 20 seconds - Slow %
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1. Introduction

6) Economic Analysis

\

? Environmental Analysis
[

Energy Analysis

®

Objective
LA B EEEEEEENE N

To evaluate and compare gasification,
combustion, and pyrolysis technologies as
process alternatives for woody biomass
valorization from energy, economic and
environmental perspective using Pinus
Patula as case of study
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2. Methodology

1. Chemical characterization

Quantitative
analysis and
experimental
procedure.

2. Proximate analysis

3. Ultimate analysis

/ 4. Gasification process

Figure 3. Steps to perform the experimental characterization of Pinus Patula Figure 4. Steps to evaluate the thermochemical conversion of Pinus Patula.
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2. Methodology

1. Chemical
characterization

Moisture
* ASTM E1756-08(2015)

Extractives
* ASTM E1690-08(2016)

Holocellulose
* ASTM D1104-56(1978)

Acid insoluble lignin
* TAPPI 222 om-02

Ash
* ASTM E1755 - 01(2015)

2. Proximate analysis

2. Ultimate analysis

Volatile matter
* ASTM E872-82(2013)

N

Fixed carbon
* ASTM E870(2013)

Ash
* ASTM E1755 - 01(2015)

Carbon
* ASTM E777-17(2017)

7
/
/
/
/
/
J

)

Hydrogen
* ASTM E777-17(2017)

Nitrogen
* ASTM E778-15(2015) ’ ’

Sulfur
* ASTM E775-15(2015)

Oxygen v
* ASTM E870 - 82(2013)

Figure 5. Standard methods used to characterize Pinus Patula
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2. Methodology

4. Pinus Patula

Raw material acquisition

CJ Raw material pretreatment
C{Gasifier maintenance

Gasifier

A N

Gas Analyzer
system

Rotameter

Thermocouples

Pilot scale gasification
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2. Methodology

Process flow diagrams of Gasification, Combustion and Pyrolysis processes

Heat
Compressor exchanger
Air > @
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Mixer Gasifier e @
Combustion
Y Dryer chamber U

== ( Cyclone Ej |
Crusher
>< Cyclone =
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Char & Bottom ash

Exhaust Gases

Ash

Figure 6. Gasification process flow diagram
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2. Methodology

Process flow diagrams of Gasification, Combustion and Pyrolysis processes

» Gaseous releases

Filter of dust particles
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Steam Turbine

Generator
Steam —
Combustion —  Electricity
System
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Figure 7. Combustion process flow diagram :
e »  Cold
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2. Methodology

Process flow diagrams of Gasification, Combustion and Pyrolysis processes
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Figure 8. Pyrolysis process flow diagram
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2. Methodology

Energy, Economic and environmental assessment

Aspen plus v9.0 (Aspen technologies Inc.
USA).

Process simulation and energy analysis

* Aspen blocks, process conditions and modeling of the process

Mass flow 250 ton/day (d.b). applying kinetic models and stoichiometric approaches.

(Aspen technologies Inc. USA). _ _
Economic analysis

* Economic metrics calculation for each process (e.g., NPV, IRR,
PO). This analysis was carried out using the software Aspen
Process Economic Analyzer v.9.0.

Economic Colombian context.
Straight line depreciation method, project plant
life 10 years, Tax rate 15% vy interest rate: 25%

-
|
I
I
|
|
|
I
|
Aspen Process Economic Analyzer v9.0 1
|
|
|
|
I
I
|
I
(Banco de la republica, 2016). :
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3. Results
| Pinus Patula characterization and fuel properties.

Lignocellulosic composition

Table 1. Results of Pinus Patula characterization and comparison with other Woody feedstocks applied in
thermochemical processes.

(d.b: dry basis, av: average)
* extractive free basis
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3. Results

Pinus Patula characterization and fuel properties

Proximate analysis.

Table 2. Results of the proximate analysis of Pinus Patula and comparison with other Woody feedstocks used

(d.b: dry basis, av:
average)
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3. Results

Pinus Patula characterization and fuel properties

Elemental analysis - N

. . Pinus Patula
Table 3. Elemental analysis results of Pinus Patula properties as fuel

material
b
H/IC=1.47(1.4-1.6)

O/C =0.68 (0.6 - 1.2)
VM/FC = 4.66 (3.0 - 4.0)

(db dry basis) VM: Volatile matter FC: fixed carbon
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3. Results

Mass and Energy indicators of the thermochemical
processes

Table 4. Yields of the thermochemical conversidon of Pinus Patula

= e

N.A: Not apply

Table 5. Energy indicators of the thermochemical conversiéon of Pinus
Patula
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3. Results

Sankey diagrams of the thermochemical processes
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3. Results

Economic evaluation of the thermochemical processes
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Figure 9 Net present value of the project for ten years of lifetime
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Figure 10. Share of costs for each thermochemical process

Research Group Chemical, Catalytic, and Biotechnological process



L
4. Conclusions

v" Woody biomass present a good versatility to be upgraded into energy and
value-added products through its thermochemical processing. Nevertheless,
the process efficiency and the range of application of biomass gasification,

combustion and pyrolysis is limited by the capacities of heat and power
generation.

v' Gasification presents a high potential to produce thermal energy, that can be
transformed in pressurized steam. On the other hand, combustion and co-
firing are strong technologies for electrical generation. Finally, pyrolysis is
focused on the obtaining of added value compounds such as bio-oil.
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