

Biofiltration of low levels of landfill gas: Human Health Risk Assessment of volatile and malodorous

CE Cossil por asil here and the second secon

¹Department of Energy, Systems Territory and Construction Engineering, University of Pisa, Pisa, Tuscany, 56122, Italy ²Department of Industrial Engineering, University of Florence, Florence, Tuscany, 50139, Italy

Outline

1. Introduction

- Background and motivation
- Management of low calorific value landfill gas (LFG)
- Research question

2. Materials and methods

- Site characterization
- Investigated LFG management scenarios
- Emissive sources
- Dispersion modelling
- Assessment of toxicological risk and air quite
- 3. Results
- 4. Conclusion and future works

Landfill gas

Introduction

Background and motivation

Introduction

Management of low calorific value landfill gas (LFG)

LFG management strategies (LIFE RE Mida, 2017)

Introduction

Research question

"Can the application of an active biofilter mitigate the risk from exposure to NMVOCs and malodorous compounds emissions from old landfill sites?"

Site characterization

Podere il Pero Landfill (Tuscany - IT) Post-closure stage (2015) Non hazarodous waste disposal site Active LFG extraction system Average $LFG_{prod} = 90 \text{ Nm}^3/\text{h}$, Average CH_4 = 33.9% v/v

Site characterization

Podere il Pero Landfill Post-closure stage (2015) Non hazarodous waste disposal site Active LFG extraction system Average LFG_{prod}= 90 Nm³/h, Average CH₄ =33.9% v/v

Investigated LFG management scenarios

Emissive Sources

Emissive Rate

NMVOCs

Odour Compounds

Liu et al., 2015 $\frac{Q_{air} \cdot [NMVOCs]}{A_{chamber}} \left[\mathbf{g} \cdot m^{-2} \cdot s^{-1} \right]$

Lucernoni et al., 2017 $SOER = \frac{c_{od} \cdot Q_{air}}{A_{chamber}} \left[\frac{OU}{m^2/s} \right]$

28/06/2019

7th International Conference On Sustainable Solid Waste Management – Heraklion 2019

28/06/2019

Dispersion modelling

28/06/2019

Assessment of the toxicological risk and air quality – APAT, 2005 - D.G.R. 15 febbraio 2012 & n IX/3018Risk = Hazard x

CALPUFF View Puff Air Dispersion Mode

Results

28/06/2019

Dispersion modelling – Annual average concentration of the NM

	Scenario 0		Scen	ario 1	Scenario 2	
C _{air} [mg/m³]	Max	Average	Max	Average	Max	Average
Cyclohexane	3.18E-06	9.39E-07	9.43E-07	2.96E-07	1.16E-06	4.32E-07
n-hexane	4.13E-07	1.22E-07	1.22E-07	3.84E-08	1.16E-07	3.42E-08
2-metylpentane	9.02E-07	2.67E-07	2.68E-07	8.40E-08	2.88E-07	9.67E-08
3-metylpentane	8.13E-07	2.40E-07	2.42E-07	7.58E-08	2.61E-07	8.78E-08
Benzene	7.96E-09	2.97E-09	2.53E-09	1.00E-09	2.24E-09	8.35E-10
Xylenes*	4.41E-06	1.30E-06	1.31E-06	4.12E-07	1.33E-06	4.25E-07
Toluene	2.76E-06	8.17E-07	8.21E-07	2.58E-07	7.75E-07	2.29E-07
Dichlorodifluorome thane	3.88E-06	1.15E-06	1.15E-06	3.61E-07	1.09E-06	3.21E-07
Vinyl chloride	5.09E-06	1.50E-06	1.17E-06	3.74E-07	1.09E-06	3.21E-07
H ₂ S	2.08E-05	6.16E-06	1.43E-06	4.23E-07	1.43E-06	4.23E-07

- Scenario 0 shows the highest value of C_{air}, Scenario 1 and 2 showed similar concentration values, H₂S resulted the compound with the maximum value of C_{air}
- > Benzene is ten times less than the limit value $(5\mu g/m^3)$
- \succ R5 resulted the receptor at which were estimated the highest C_{air}

28/06/2019

Human Health Risk Assessment – Cumulative risk at each rece

	Scenario 0		Scenario 1		Scenario 2	
Receptor	HQ _τ [-]	R benzene [-]	HQ _τ [-]	R benzene [-]	HQ _τ [-]	R benzene [-]
R1	2.33E-03	1.75E-11	2.23E-04	5.73E-12	2.15E-04	4.91E-12
R2	3.20E-03	1.57E-11	3.09E-04	4.90E-12	2.95E-04	4.42E-12
R3	5.57E-03	2.43E-11	6.10E-04	9.84E-12	5.22E-04	6.82E-12
R4	8.33E-03	2.21E-11	7.93E-04	7 70F-12	7 68F-04	6.23E-12
R5	1.32E-02	4.21E-11	1.25E-03	Accentable	e levels of	1.18E-11
R6	2.16E-03	1.59E-11	2.03E-04	Cumulat		4.48E-12
R7	3.26E-03	1.65E-11	3.08E-04	Culturat		4.64E-12
R8	1.89E-03	5.09E-12	1.85E-04	ΠŲ _T ≤	2 10-3	1.43E-12
R9	1.57E-03	5.91E-12	1.56E-04	R< 7	10-13	1.66E-12
R10	9.27E-04	5.07E-12	8.81E-05	1.002-12	0.34E-V3	1.42E-12
R11	5.06E-04	2.44E-12	5.13E-05	8.59E-13	4.69E-05	6.87E-13

- > HQ_T and R are always many orders of magnitude lower than the maximum acceptable value (HQ_T≤1 e R<10⁻⁶)
- > Scenario 0 is the worst-case scenario (1.32E-02 for HQ_T and 4.21E-11 for R)
- ➢ HQ_T and R are one order of magnitude lower for Scenario 1 and 2 than Scenario 0
- Scenario 2 is the best-case scenario

Human Health Risk Assessment - Comparison of LFG management

ctratagia	^							
sciacegie	S Scenar	Scenario 1vs 0		Scenario 2 vs 0		Scenario 2 vs 1		
Receptor	NC	С		NC	С		NC	С
R1	-90.4%	-67.2%		-90.8%	-71.9%		-3.8%	-14.4%
R2	-90.3%	-68.8%		-90.8%	-71.9%		-4.4%	-9.8%
R3	-89.1%	-59.5%		6%	71.0%	-	14.4%	-30.7%
R4	-90.5%	-65.2%	Ν	NC %	C		-3.1%	-19.1%
R5	-90.6%	-68.2%	_9	1% %	-72%		-2.4%	-11.6%
R6	-90.6%	-69.1%		3%	1270		-2.3%	-9.1%
R7	-90.6%	-67.5%		-90.8%	-71.9%		-2.5%	-13.4%
R8	-90.2%	-64.2%		-90.8%	-71.9%		-5.8%	-21.6%
R9	-90.0%	-64.2%		-90.7%	Field da	ata give	- higher	reduction
R10	-90.5%	-67.5%		-90.8%	efficiency	than th	ose indi	cated by IPPC
R11	-89.8%	-64.8%		-90.7%	enciency			
1								

Scenario 1 and Scenario 2 show the maximum reduction of the cumulative and cancer risk

- Scenario 2 is better than Scenario 1:
 - The maximum percentage decrease for Non-Cancerogenic compounds (NC) is 90.8% in Scenario 2 vs 0
 - The maximum percentage decrease for benzene is 71.9% in Scenario 2 vs 0

28/06/2019 show the trightiest perference on Systemable Solid Wrete Management in (14.4% and 5 Heraklion 2019

28/06/2019

Results

Assessment of the air quality - Peak hourly odour c	Odour concentration ≤ 1		
reached of the an quality reached by buota c	OU_/m ³		

		Odour concentration [OU _E /m ³]	E,	
Receptor	Scenario 0	Scenario 1	Scenario 2	
R1	1.02E-02	2.84E-03	3.28E-03	
R2	1.49E-02	4.28E-03	4.92E-03	
R3	2.56E-02	7.43E-03	1.10E-02	
R4	3.76E-02	1.05E-02	1.19E-02	
R5	5.62E-02	1.57E-02	1.69E-02	
R6	9.88E-03	2.76E-03	3.04E-03	
R7	1.35E-02	3.99E-03	4.42E-03	
R8	7.33E-03	2.13E-03	2.63E-03	
R9	6.50E-03	1.94E-03	2.42E-03	
R10	3.19E-03	9.47E-04	1.13E-03	
R11	2.17E-03	6.32E-04	8.20E-04	

- > The odour concentration levels are up to three orders lower than the limit value of $1 OU_{E}/m^{3}$
- Scenario 0 shows the highest peak hourly odour concentration
- Scenario 1 and Scenario 2 show that the peak hourly odour concentration are one order of magnitude less than Scenario 0
- R5 shows the highest value of odour concentration (1.57E-02 and 1.69E-02)
- Scenario 1 is the best case scenario

28/06/2019

Assessment of the air quality - Comparison of the LFG managemen

stratedies						
Receptor	Scenario 1 vs	0	Scenario 2 vs 0	Scenario 2 v	s 1	
S						
R1	-72.05%		-67.71%	15.51%		
R2	-71.22%		-66.94%	14.86%		
R3	-71.01%		-57.10%	47.99%		
R4	-72.05%		-68.46% 12.86%			
R5	-72.06%		-70.00%	7.38%		
R6	-72.05%		-69.25%	10.03%		
R7	-70.49%		-67.33%	10.71%		
R8	-70.99%	Odaur	-64.04%	23.96%		
R9	-70.15%	Odour	-62.76%	24.77%	Odour	
R10	-70.33%	Reductio	-64.71%	18.94%	Reductio	
R11	-70.82%	n 72%	-62.17%	29.64%	n	
			ī		Efficienc	

- Scenario 1 reduce odour impact on average by 72% than Scenario 0
- Scenario 2 reduce odour impact on average by 65.5% than Scenario C < 70%</p>
- The odour impact for Scenario 2 (Reduction efficiency is evaluated using experimental data) is higher than Scenario 1 (Reduction efficiency is assumed to be 70%)
- The assumption of a odour reduction efficiency of 70% should be revised in light of the results obtained

Y

Assessment of the air quality - Isopleth of peak hourly odour concentration

> Peak hourly odour concentration $< 1 \text{ OU}_F/\text{m}^3$ at any receptors

R4 and R5 show the maximum peak hourly concentration between 0.05

and U.1 / International Conference On Sustainable Solid Waste Management -28/06/2019 Heraklion 2019

Conclusion and future works

Research question

"Can the application of an active biofilter mitigate the risk from exposure to NMVOCs and malodorous compounds emissions from old

Human health risk assess haef fill sites?"

In Scenario 2 the active biofilter reduce the risk on average by 91% for non-cancerogenic compounds and 72% for cancerogenic compounds

Air quality assessment

	\checkmark
	5
(

In Scenario 1 the active biofilter reduce the odour impact on average by 72%

The assumption of an odour abatement of **70%** due to the biofilter is higher than the real reduction efficiency

Future Works

Revision of the preliminary assumptions on:

- the abatement of NMVOCs and odour compounds due to the final landfill capping layer
- To perform sampling campaigns on the landfill surface to directly assess odour concentration
- Dispersion modelling considering the roof of the active biofilter

Biofiltration of low levels of landfill gas: Human Health Risk Assessment of volatile and malodorous compounds

E. Rossi*, N. Frasin Perorina Iannelli, G. Ferrara

ida

Thanks for the **Attention!**

Elena Rossi, PhD Student e-mail: elena.rossi@phd.unipi.it DESTEC- University of Pisa Valorizatio n Group

(WVG)

Any questions?

Rational Technical University of Athens

26-29 June 2019

HERAKLION 2019