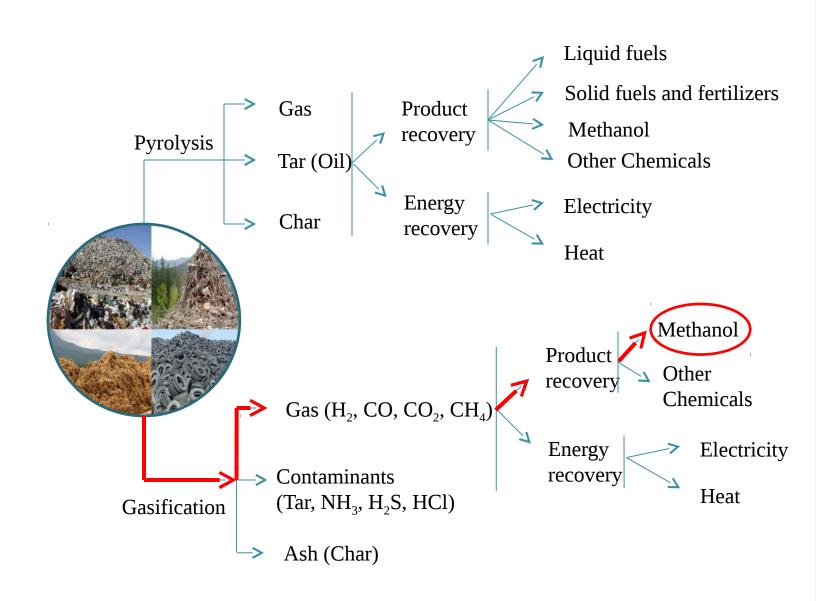
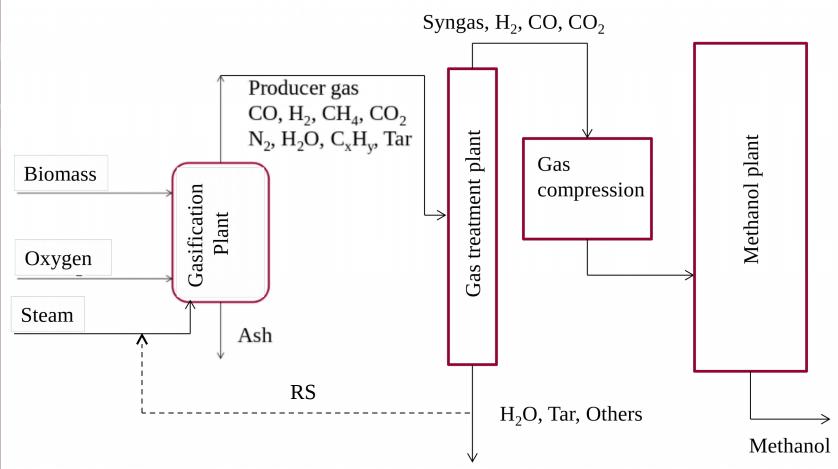


Waste Biomass to Methanol Optimisation of the Gasification Agent to Feed Ratio

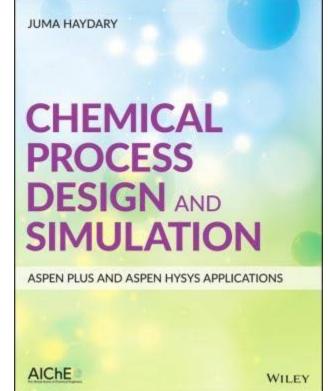
J. Haydary, P. Šuhaj, J. Husar


Department of chemical and biochemical engineering Institute of chemical and environmental engineering Faculty of chemical and food technology

Slovak University of Technology in Bratislava, Slovakia


Waste biomass

- wood waste from forestry and wood processing industry,
- waste from agriculture and landscape maintenance (maize and cereal straw, rape straw, hay, the remains of vineyards and orchards),
- waste from livestock,
- organic waste from food industry


Waste biomass to Methanol

Details of simulation of a complete waste to methanol plant can be found in:

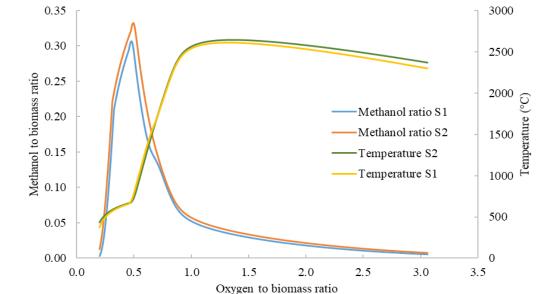
In this work we focus on: Process efficiency given by: **MBR - Methanol to Biomass Ratio** At variables: **OBR - Oxygen to Biomass Ratio SBR - Steam to Biomass Ratio RSBR - Recycled Steam to Biomass Ratio**

Biomass Characterization

Weight fraction (wt. %)	Wheat straw	Barley straw	Corn leaves and stalks	Sunflower s	Wood chips
Sample 1	9.238	13.840	15.350	39.092	22.480
Sample 2	14.497	14.499	53.410	12.160	5.430

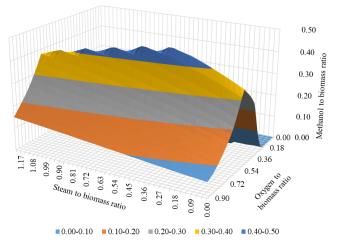
	Moistur	1oistur Ash		mate a	нну			
Biomass e	e (wt. %)	(db wt. %)	С	н	N	S	0	(MJ/kg db)
Wheat straw	1.91	4.90	42.8 0	5.44	0.60	0.00	46.2 6	16.80
Barley straw	1.94	6.90	49.7 0	6.90	1.00	0.70	34.8 0	16.96
Corn leaves and stalks	6.05	2.08	50.8 8	5.26	0.74	0.19	40.8 5	16.97
Sunflowe rs	14.60	7.31	45.3 8	5.66	0.26	2.22	39.1 6	14.68
Wood chips	7.04	0.96	52.7 0	5.34	0.50	0.00	40.5 0	18.84
Sample 1	8.66	4.80	48.2 3	5.68	0.52	0.99	39.7 7	16.48

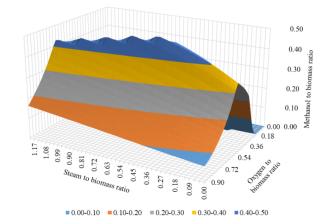
- 100 % conversion of biomass to gases and ash,
- only CO, H_2 , CO_2 , H_2O , CH_4 , NH_3 , HCI, H_2S and N_2 are considered as gas components,
- equilibrium gas composition in the gasifier,
- naphthalene as model component for tars,
- tars yield was calculated as a function of temperature inside the gasifier,
- no heat losses from the gasifier and heat exchangers,
- atmospheric pressure inside the gasifier.



Gasification agents

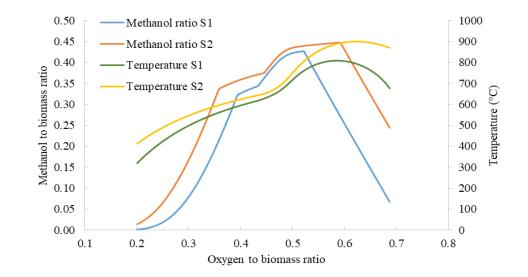
Three different cases were investigated:


- 1. Gasification with oxygen only
- 2. Gasification with oxygen and steam
- Gasification with oxygen and recycled steam


Gasification with only oxygen as gasification agent

Biomass	MBR status	OBR	SBR	RSBR	Temperatu re (°C)	MBR
Sample 1	Maximal	0.4780	0	0	701.4	0.3066
Sample 1	At required temperatu re	0.5230	0	0	903.1	0.2602
Sample 2	Maximal	0.4800	0	0	715.5	0.3323
Sample 2	At required temperatu	0.5736	0	0	904.8	0.2902

Gasification with oxygen and steam without steam recycle



sample 1

sample 2

Biomass	MBR status	OBR	SBR	RSBR	Temperatu re (°C)	MBR
Sample 1	Maximal	0.4800	0.4201	0	678.9	0.4617
Sample 1	At required temperatu re	0.5910	1.040	0	900.1	0.4084
Sample 2	Maximal	0.4800	0.5101	0	688.2	0.4927
Sample 2	At required temperatu	0.5736	0.8892	0	900.1	0.4265

Gasification with oxygen and recycled steam

Biomass	MBR status	OBR	SBR	RSBR	Temperatu re (°C)	MBR
Sample 1	Maximal	0.5190	0	0.6097	755.6	0.4269
Sample 1	At required temperatu re	-	-	-	-	-
Sample 2	Maximal	0.6000	0	1.213	896.3	0.4306
Sample 2	At required temperatu	0.6168	0	1.412	900.0	0.3942

Conclusion

- The best methanol to biomass ratio MBR (at required 900 °C) was achieved when OBR was 0.57, SBR 0.89 and Sample 2 was used. The MBR at these conditions was 0.43.
- The required temperature of 900 °C in the gasifier may not be achived for same biomass types if all recycled steam is used.
- The samples reached different results in every case. It can be stated that lower moisture and higher heating value of biomass led to better methanol to biomass ratio

Thank you for attention

