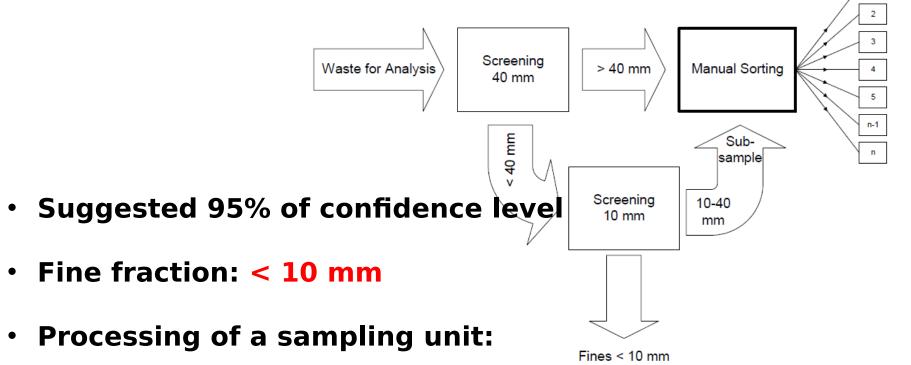


Detailed Sampling Protocol for the Analysis of Residual Municipal Solid Wastes J. Faitli¹, R. Romenda²

¹associate professor, ²PhD student

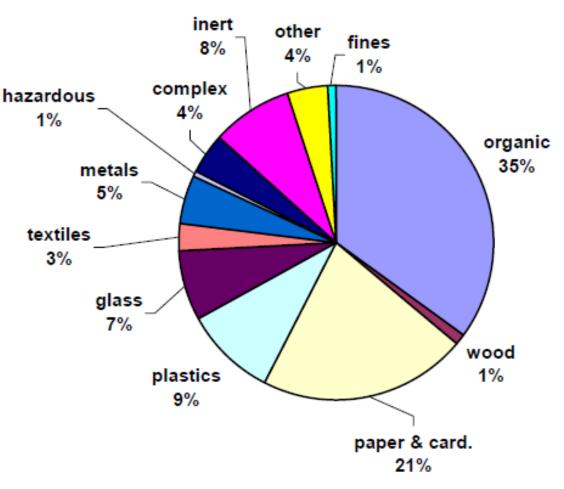
^{1,2}Institute of Raw Materials Preparation and Environmental Processing, University of Miskolc 3515 Miskolc-Egyetemváros, Hungary, email:

eitfaitj@uni-miskolc.hu HERAKLION 2019


- Shortly about existing MSW sampling standards
- Development of a new RMSW (residual municipal solid wastes) sampling and average sample preparation methodology
- Some data about the 2017/18 spring and winter Hungarian MSW characterisation campaigns
- Definition of key concentration parameters and their measured values

Waste Composition

- Fundament of sampling: **BINS** called as sampling units
- Stratified sampling (might based on: seasonality, residential structure, bin size, collection system, source of waste, socio-economic influences)



catalogue. Primary material categories according to SWA-Tool:

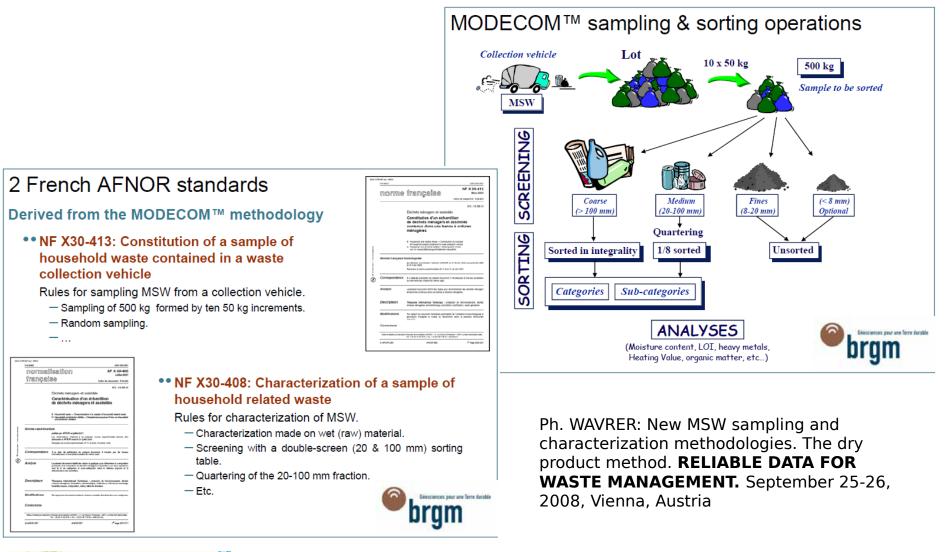
Remark: no composition data for discrete size fractions, therefore not suitable for waste preparation technological design!



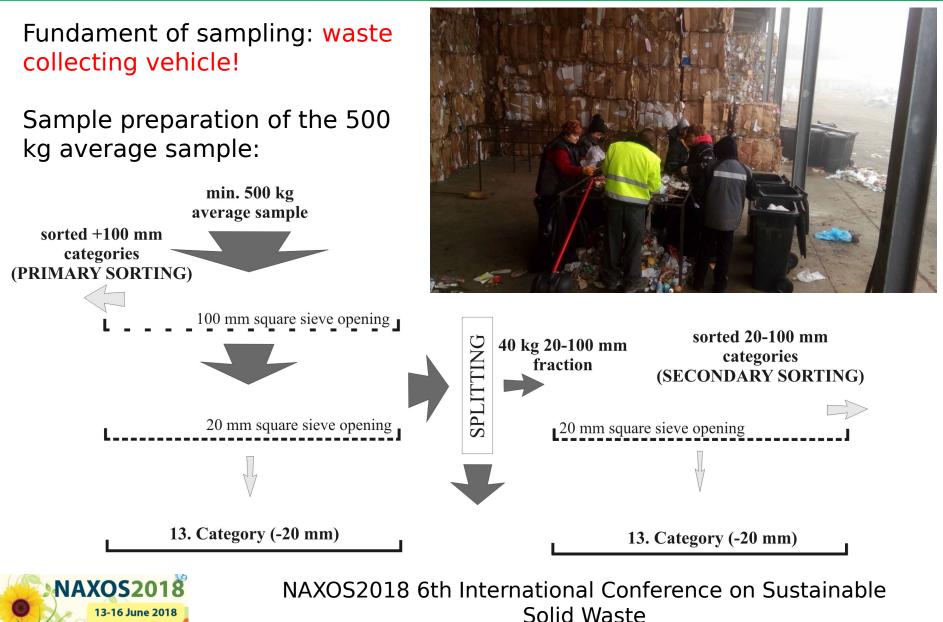
MSW characterization in France

A little page of history

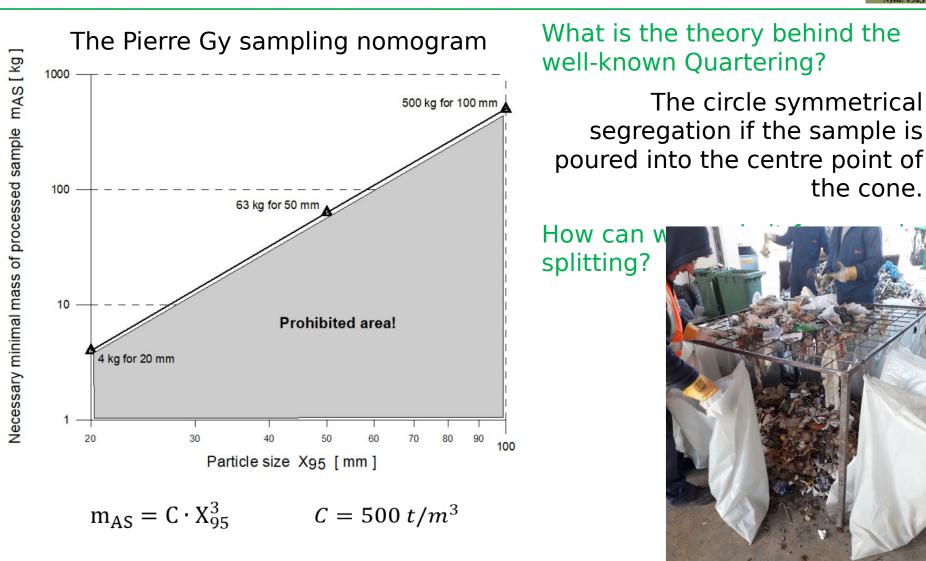
- 1993: MODECOM[™] (French MSW characterization methodology).
 - Characterization made on the collection vehicle.
 - Mass of sample: 500 kg.
- 1993: First national campaign of MSW characterization in France, based upon MODECOM™
- 1994-1997: Development of selective collection schedules.
- 1997: Adaptation of the MODECOM[™] methodology for the selective collection.


Ph. WAVRER: New MSW sampling and characterization methodologies. The dry product method. **RELIABLE DATA FOR WASTE MANAGEMENT.** September 25-26, 2008, Vienna, Austria

he MODECOM methodology



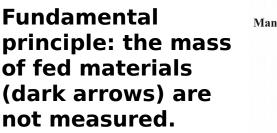
Current Hungarian Standards MSZ 21420 Parts: 28 and 29 for MSW sampling were introduced in 2005

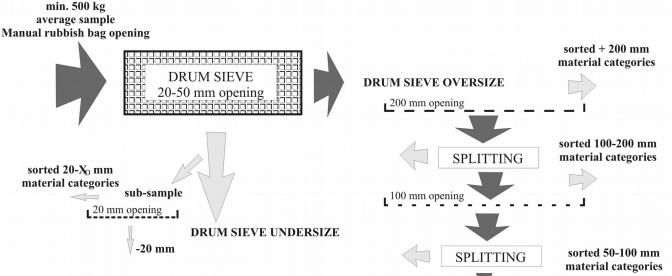


- More than 3000 old landfills had been closed and re-cultivated and only a few but modern and big regional landfills and waste processing plants had been built in Hungary.
- As a consequence there are machines, such as mobile drum sieves everywhere available for the MSW analysis.
- Another consequence, that the waste is transported into regional plants, therefore the analysis can be carried out in one spot for a complete region.
- The food content and the packaging materials content of the residual municipal solid wastes are requiring more and more attention recently.
- A very important issue, namely more detailed information about the MSW composition for many discrete particle size fractions is necessary for advanced technological design.

• All these arguments made the improvement of the standard **HERANDON OFO** to be important. ^{26-29 June 2019} ^{26-29 June 2019} ^{26-29 June 2019} ^{26-29 June 2019} ^{26-29 June 2019}

ories behind the new sampling protocol




7th International Conference on Sustainable Solid Waste Management 26-29 June 2019, Heraklion, Crete

MISKOLC

The developed new protocol for the average sample preparation

The mass of processed materials (light arrows) are measured.

50 mm opening

20 mm opening

SPLITTING

-20 mm

sorted 20-50 mm

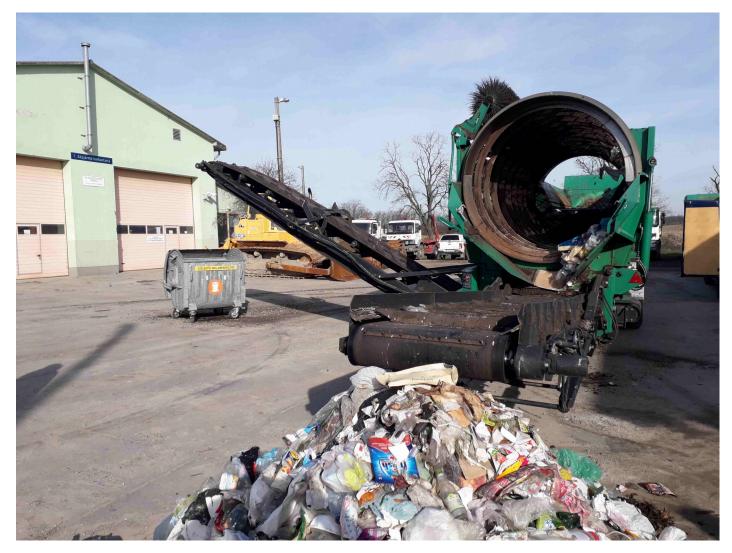
material categories

MISKOLC

YETEM

FG

Can the total mass


balance be machine is beneficial because it calculated the material and the dirty fine fractions are removed and the safety of sorting workers and the accuracy of sorting are increasing.

- Used sieves were 200, 100, 50 and 20 mm. This is a so called "2" sieve series, where the width of size fractions practically doubles.
- The developed sampling protocol is flexible because after each sieve the mass of the undersize fraction can be reduced by complence on Sustainable Solid Waste splitting.
 Management 26-29 June 2019, Heraklion, Crete

Drum sieving in Pusztazámor

Itaneous classification and sorting on different sieves.

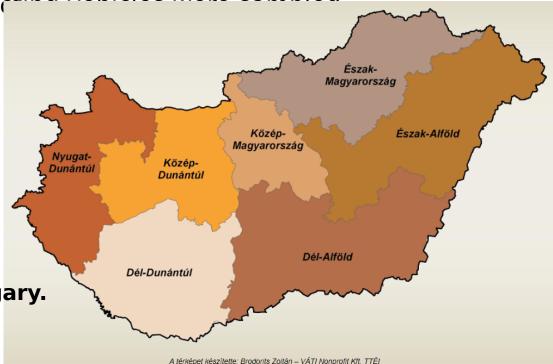
200 mm

100 mm

20 mm

A composition data (example). More then 1000 tables for the 2017/18 campaigns.

.					_				>200 mm		_												
Category	lafood	1b non-food		1dbio	2 paper	1	4 composite	5 textile	6hygienic	7a2D	7bPET	7c3D	8 combustible	9glass	10aFe	10bAl	10cCu	11 inert	12 hazardous				
Total	0,47	0,13	0,01	0,88	0,86	0,93	0,16	1,87	1,23	2,42	0,23	0,42	1,09	0,26	0,25	0,06	0,02	0,38	0,12	0,00	0,16	% Σ	11,94 %
Packaging from this	0,00	0,00	0,00	0,00	0,19	0,80	0,16	0,01	0,01	2,41	0,26	0,25	0,08	0,25	0,13	0,04	0,00	0,00	0,08	0,00	0,00	%Σ	4,68 %
	100-200 mm																						
Category	lafood	1h non-food	1c mixed food	1d bio	2 paper	3 cardboard	4 composite	5 textile	6hygienic	7a2D	7bPET	7c3D	8 combustible	9 glass	10aFe	10bAl	10c Cu	11 inert	12 hazardous	12~20mm	1/ ovtramou		
Total	2.42	0.98	0.21	0.63	2.29	0.73	0.78	1.09	3.67	3.21	1.75	1.47	1.09	1.45	0.87	0.36	0,01	0.82	0.36	0.00	0,13		24,31 %
Packaging from this	0.00	0,00	0,21	0,00	0,43	0,73	0,70	0.01	0.11	3.15	1,75	1,47	0.07	1,43	0,07	0,30	0,01	0.02	0,30	0,00	0,15		10.91 %
	0,00	0,00	0,00	0,00	0,45	0,05	0,77	0,01	0,11	3,13	1,72	1,21	0,07	1,45	0,70	0,54	0,00	0,02	0,27	0,00	0,00		10,51 70
50-100 mm																							
Category	1afood	1b non-food	1c mixed food	1d bio	2 paper	3 cardboard	4 composite	5 textile	6 hygienic	7a2D	7bPET	7c3D	8 combustible	9glass	10aFe	10bAl	10cCu	11 inert	12 hazardous	13<20mm	14 extraneou	5	
Total	2,08	1,20	0,50	0,47	3,52	0,72	0,50	0,43	2,43	1,81	1,42	1,48	0,74	1,56	0,69	0,71	0,01	0,65	0,43	0,00	0,02	%Σ	21,39 %
Packaging from this	0,00	0,00	0,00	0,00	0,44	0,57	0,50	0,00	0,58	1,86	1,43	1,24	0,06	1,54	0,63	0,70	0,00	0,02	0,36	0,00	0,00	%Σ	9,91 %
									20 - 50 mm														
Category	1afood	1b non-food	1c mixed food	1d bio	2 paper	3 cardboard	4 composite	5 textile	6 hygienic	7a2D	7bPET	7c3D	8 combustible	9glæs	10aFe	10bAI	10cCu	11 inert	12 hazardous	13<20mm	14 extraneou	<u> </u>	
Total	0,55	3,16	0,16	2,34	3,40	0,14	0,22	0,11	0,33	0,91	0,06	0,67	0,56	1,58	0,24	0,37	0,00	0,51	0,46	0,00	0,02	%Σ	15,80 %
Packaging from this	0,00	0,00	0,00	0,00	0,46	0,13	0,22	0,00	0,05	1,01	0,06	0,42	0,03	1,37	0,16	0,35	0,00	0,02	0,30	0,00	0,00	%Σ	4,57 %
									<20 mm														
Category																				13<20mm		_	
Total																				26,57		%Σ	26,57 %
Packaging from this																						%Σ	0,00 %
Category	1afood	1b non-food	lc mixed food	1d bio	2 paper	3 cardboard	4 composite	5 textile	6 hygienic	7a2D	7bPET	7c3D	8 combustible	9glass	10aFe	10b Al	10cCu	11 inert	12 hazardous	13<20mm	14 extraneou		
Total	5,52	5,47	0,88	4,33	10,08	2,52	1,65	3,51	7,65	8,35	3,47	4,04	3,48	4,85	2,04	1,49	0,04	2,37	1,36	26,57	0,33	%Σ	100,00 %
Packaging from this	0.00	0.00	0.00	0.00	1,53	2.14	1.65	0.02	0.74	8.42	3,47	3,12	0.23	4,59	1.69	1,43	0.00	0,05	1,01	0,00	0.00		


1. BIOLOGICALLY DEGRADABLE. 1a.eatable food waste. 1b. non-eatable part of food. 1c.non-dismantled food waste, 1d.other biologically degradable, 2. PAPERS. 3. CARDBOARDS. 4. COMPOSITES. 5. TEXTILES. 6. HYGIENIC WASTES. 7. PLASTICS. 7a. 2D plastics, 7b. PET, 7c.3D plastics, 8. OTHER NON-CATEGORISED COMBUSTIBLES. 9. GLASSES. 10. METALS. 10a. Fe, 10b. AI, 10c. Cu, 11. OTHER NON-CATEGORISED NON-COMBUSTIBLES (INERT) 12. HAZARDOUS. 13. FINE FRACTION (< 20 mm). 14. EXTRANEOUS MATERIALS.

e data of the Hungarian MSW Campaigns 2017/18

- The new sampling protocol was validated and confirmed by the Entruster in October 2017 in Miskolc - Hejőpapi.
- Samplings were carried out from January to May 2018.
- A regional waste management centre was selected from each of the seven EU statistical regions of Hungary, and at a time 17 RMSW (residual municipal solid wastes) collection was bid a seven bid and a time 17 RMSW (residual)
- 10 samplings from a +50000 habitants municipality. 3 samplings from 5000 to 50000; 2 from 1000 to 2000 and 2 from -1000 habitants municipalities.

TS EU statistical regions of Hung<mark>ary.</mark>

MISK

7th International Conference on Sustainable Solid Waste Management 26-29 June 2019, Heraklion, Crete

HERAKLION 2019 26-29 June 2019

• Altogether 224 vehicles were sampled. The total processed sample volume was: $224 \times 3 = 672 \text{ m}^3$

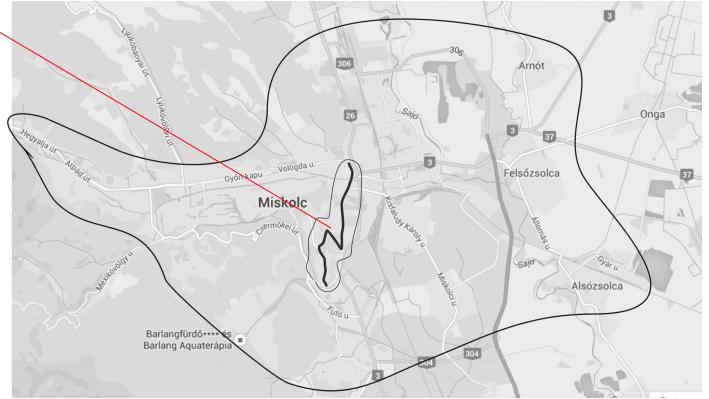
- The selectively collected MSW streams were not sampled, but the main features of the selective collection (collection area of each SMSW collecting vehicle – called sector, the collected waste streams, their collection frequency, method, containers, etc.) were reported by the public service waste management companies.
- Sampling stratification was made by:

Season (2018 winter, 2018 spring)

• Municipality (municipality level, county level, NUTS regional

level, country)

• Residential structure


e data of the Hungarian MSW Campaigns 2017/18

MISKOLCI

- tification on the basis of residential structure:
- SECTOR (the served area of a waste collecting vehicle):

- Number of habitants in a SECTOR from
 - Family houses
 - Block of flats
 - Non-household source

Results: Key parameters of the 2018 winter RMSW campaign.

Dry matter mass concentration	Central- Hungary	North- Hungary	Northern Great Plain	Southern Trans- danubia	Central Trans- danubia	Southern Great Plain	Western Trans- danubia	Hungary
Total food waste content [%]	14.1	15.5	10.9	13.9	10.5	7.7	7.2	11.9
Eatable food waste content [%]	9.1	3.8	4.0	4.1	5.4	2.2	4.6	5.5
Biologically decomposable materials content [%]	21.1	26.2	21.1	26.8	23.4	16.3	20.3	20.8
Total packaging materials content [%]	34.6	28.6	31.8	23.8	32.4	23.1	27.8	30.1
Potential secondary raw materials content [%]	41.3	33.9	40.1	31.3	42.2	35.5	39.9	31.6
TOC of 13. fine fraction [%]	18.5	18.2	29.8	19.0	27.8	16.1	16.9	17.3

The **total food waste content** is the sum of the material sub-categories 1aeatable food waste, 1b- non-eatable food waste and 1c- non-dismantled (eatable and non-eatable were found together).

The eatable food waste content is the material sub-category 1a.

26-29 June 2019

The **biologically decomposable material content** was calculated as the sum of the mass concentration of the sorted 1- biologically decomposable material category plus the TOC times the concentration of the 13- fine fraction.

Results: Key parameters of the 2018 spring RMSW campaign.

Dry matter mass concentration	Central- Hungary	North- Hungary	Northern Great Plain	Southern Trans- danubia	Central Trans- danubia	Southern Great Plain	Western Trans- danubia	Hungary
Total food waste content [%]	11.2	5.6	14.9	14.2	8.1	5.7	15.5	10.8
Eatable food waste content [%]	7.8	3.7	3.3	5.9	4.7	2.4	5.7	5.2
Biologically decomposable materials content [%]	19.9	21.1	25.2	26.9	33.0	28.0	23.6	23.4
Total packaging materials content [%]	35.3	24.6	32.0	23.1	23.5	21.3	26.0	28.4
Potential secondary raw materials content [%]	47.8	38.4	38.9	36.6	31.2	28.6	43.1	31.9
TOC of 13. fine fraction [%]	27.5	19.7	26.1	29.7	30.2	25.9	30.3	22.6

The **total packaging material content** was determined during the processing of the average sample by the applied method described earlier. The **potential secondary raw materials content** was calculated as the sum of the mass concentrations of the 2- papers, 3- cardboards, 4- composites, 7- plastics, 9- glasses and 10- metals material categories.

Conclusion

- Since the introduction of the Hungarian MSW sampling standards in 2005 the waste management have been significantly improved in Hungary.
- A significantly improved average sample preparing protocol have been developed and applied.
- Two validation campaigns, a winter and a spring time have been carried out from October 2017 to May 2018. 672 m³ averaged samples were processed.
- According to the standard protocol the mass of each sample portion is measured during the feed into analysis. According to the new protocol everything is weighted after processing.
- After some initial confusion among sampling experts, because of this different strategy – the new protocol was successfully applied and results with low margin of errors have been achieved.

HERAELANE OF THE MEMORY OF THE PART AND THE

Thank You for Your attention!

The described work/article was carried out as part of the "Sustainable Raw Material Management Thematic Network – **RING 2017", EFOP-3.6.2-16-2017-00010 project** in the framework of the Széchenyi2020 Program. The realization of this project is supported by the European Union, co-financed by the European Social Fund.

