

University of Campinas School of Chemical Engineering Laboratory of Particles Technology and Multiphase Processes

Pyrolysis Kinetics Modeling of the Hybrid Sugarcane IACSP95-5000

Thomas R. Oliveira and Katia Tannous* *email: katia@feq.unicamp.br

Heraklion, 26-29 June 2019

Presentation Outline

- 1. Introduction
- 2. Objectives
- 3. Materials and methods
- 4. Results and discussion
- 5. Conclusions

Acknowledgements

1. Introduction

Fig. 1. Cutting cross-section of different sugarcane stems

Hybrid sugarcane SP-95-5000 (2013) - Agronomic
Institute of Campinas (IAC), SP,Brazil: genetically
modified from Sac. officinarum and spontaneum.
EX>HC≈C>L (Lima, 2016).

Advantages: higher sugar production, better water independence, and higher biomass productivity in the dried areas (Brazillian cerrado).

2. Objectives

Evaluate the thermal decomposition kinetics of hybrid sugarcane, SP95-5000, by thermogravimetric analysis in an inert atmosphere applying onestep (isoconversional methods) and multistep (independent parallel reactions scheme) reaction models, providing the viability of this biomass as a source for pyrolysis processes.

3. Materials and Methods

3.1 Thermogravimetric Analysis, TGA

Material: hybrid sugarcane (18 month) Treatment: Dried, ground/knife mill, sieved (250 μm) $M_{biomass}$: ~10 mg Gas: Nitrogen, 50mL/min Heating rates: 5, 10, 15, 20 °C/min T range: 25 °C – 900 °C

Fig. 3. Equipment Shimadzu TGA-50

Fig. 2. Cane stem

3.2 Mathematical Approach

Normalized mass	$W = \frac{m_t}{m_i}$
Normalized mass rate (DTG)	$\frac{dW}{dt} = \frac{1}{m_i} \frac{dm_t}{dt}$
Experimental conversion	$\alpha_{exp} = \frac{W_i - W_t}{W_i - W_f} \qquad (\alpha = 0-1)$
Experimental conversion rate	$\left(\frac{d\alpha}{dt}\right)_{exp} = -\frac{1}{(W_i - W_f)}\frac{dW_t}{dt}$

 m_i / W_i : the mass/normalized mass at the beginning; m_t mass at the time; W_f : normalized mass at the end of the pyrolysis range, for each heating rate

3.3 Kinetic Modeling – One-step reaction model

A - Linearization method

3.1.1. Isoconversional Methods

Graphical solution

Numerical solution

3.1.2 Master Plots (mechanism) and Linearization (A) Methods

Fig. 4: Decomposition phenomena

representation

Pérez-Maqueda; Criado (2000)

$$p\left(\frac{E_a}{RT_a}\right) = \left(\frac{exp(-x)}{x}\right) * \left(\frac{x^7 + 70x^6 + \dots 357120}{x^8 + 72x^7 + 2024x^6 + \dots 403200}\right)$$

9

<u>3.4 Kinetic Modeling – Multistep reaction model</u>

Independent parallel reactions scheme, IPRS

$$\mathbf{EX} \stackrel{\mathbf{k}_{1}}{\underset{\mathbf{k}_{2}}{\mathsf{Solid}}} = k_{i}(1 - \alpha_{i})^{n_{i}}$$

$$\mathbf{EX} \stackrel{\mathbf{k}_{1}}{\underset{\mathbf{k}_{2}}{\mathsf{Solid}}} \stackrel{\mathbf{Solid}}{\underset{\mathbf{k}_{2}}{\mathsf{Solid}}} \stackrel{\mathbf{Volatile}(\mathbf{II})}{\underset{\mathbf{k}_{4}}{\mathsf{Solid}}} \stackrel{\mathbf{I} \\ \mathbf{Solid} + \text{Volatile}(\mathbf{III})}{\underset{\mathbf{k}_{4}}{\mathsf{Solid}}} \stackrel{\mathbf{I} \\ \mathbf{Solid} + \text{Volatile}(\mathbf{III})}{\underset{\mathbf{k}_{4}}{\mathsf{Solid}}} \stackrel{\mathbf{I} \\ \mathbf{Solid} + \text{Volatile}(\mathbf{IV})}{\underset{\mathbf{k}_{4}}{\mathsf{Solid}}} \stackrel{\mathbf{I} \\ \mathbf{I} \\ \mathbf$$

3.5 Validation of data modeling

4. Results and Discussion

4.1 Thermal decomposition analysis

Fig. 5. Normalized mass, W, and its derivative, dW/dt, for four heating rates

4.2 Determination of activation energy

Fig. 6. Activation energy profiles as a function of conversion α =0.05-0.90, 180-420°C

4.3 Determination of reaction mechanism

Fig. 7 Comparatives of experimental and theoretical data as a function of conversion

 E_{a} (VZ); α = 0.2-0.8 (T=180-420°C) ; F6 = (1- α)⁶

<u>4.4 Determination of pre-exponencial factor</u>

Fig. 8 Linearization of the conversion rate equation as

a function of the inverse of absolute temperature

4.5 Validation of kinetic parameters for both reaction models, 5° C/min

Fig. 9 Comparative between experimental and theoretical conversion rates (a, b) and for each component (b) as a function of temperature

Table 1: Parameters obtained through the reaction models (β =5-20°C/min)

Model	E _a (kJ/mol)	Log A (log s [.] 1)	Reaction order	volatilized fraction	AD (%)	
One-step	152.57	13.03	$F6 = (1-\alpha)^6$		22.64± 1.24	
Multistep, IPRS						
Extractives	131.43 ± 1.60	11.39 ± 0.27	1	0.32 ± 0.01		
Hemicellulose	103.65 ± 0.50	7.31 ± 0.06	1	0.23 ± 0.01	4 61+ 0 14	
Cellulose	174.05 ± 0.06	12.24 ± 0.05	1	0.27 ± 0.01	4.01± 0.14	
Lignin	64.04 ± 2.85	2.09 ± 0.25	1.5	0.18 ± 0.01		

[E_a: Energy canes and sugarcane residues from literature]: Extractives (100-110 kJ/mol);
 Hemicellulose (100-200 kJ/mol), Cellulose (180-250 kJ/mol), Lignin (40-100 kJ/mol)

5. Conclusions

- Thermal decomposition (devolatilization) of the hydrid cane showed three main components: extractives, hemicellulose, and cellulose;
- Isoconversional methods/One-step reaction model presented higher average deviation, however, the activation energy can be used as initial guesses for each component in the multiple reactions scheme;
- Total conversion rates were better described considering four reactions (AD < 5%), indicating that these kinetic parameters could be used for future process modeling involving the hybrid sugarcane;
- Similarities with residues and energy cane show possibility possible to mix them to use industrially with the current technologies for sugar and energy productions.

Acknowledgements

•Brazilian Research Agency (CAPES) and Unicamp (financial support), Brazil

Coordination for the improvement of higher lever Personnel

SAE and FAEPEX