### **HERAKLION 2019**



#### Two-Stage Batch Adsorber Optimisation for Malachite Green Removal Using Activated Waste Biomass

Authors: M. Hijab, P. Li, J. Saleem, P. Parasarathy, H.R. Mackey, G. McKay

# Outline

- Introduction and Objectives
- Experimental Systems
- Modeling Theory and Models
- Results
- Conclusion

# INTRODUCTION



### Waste Biomass

#### Sources:

- Straws (wheat, rice husk...)
- Shells (coconut, pistachio, palm kernel, walnut...)
- Fruit stones (olive, dates, peaches, mango...)
- Pine, wood, bamboo, lignin....





Source: filtrasystems

# **Activated Carbons**

- Activation: controlled • oxidation of carbon atoms in the raw material – expanding the internal surface area
- Physical and chemical activation
- Strong physical adsorption and chemical reactions
- Low density •
- High porosity: pore volume (0.2 to 0.6 cm<sup>3</sup>/g) Brunauer- Emmett- Teller (BET): surface area (500 to 1500 m<sup>2</sup>/g) •

Source:yet2.com marketplace





# Dyes (Malachite Green)

- Dyes are applied to textiles, paper, leather, food, drugs, cosmetics and other products.
- products.
  More than 2000 dyes are currently used (reactive orange, congo red,
- Majory dervice mail achite greekens (increase in COD, decrease in DO, toxic, carcinogenic, mutagenic, prevent light penetration into water)

Malachite Green



 $C_{23}H_{25}ClN_2$ 



Source: Alibaba.c om

### Adsorption



**Activated Carbon** 

Pores

# Objectives

- Characterize date stones
- Develop suitable activation methods
- Test and compare the performance of the activated date pits adsorbents on the target pollutant of Malachite Green
- Understand the adsorption mechanisms
- Design a two stage adsorption system

The waste product of the seedless date products industry is the date "pit" or date "stone" which is a sustainable and economical resource that can be used to enhance the treatment of water.

### **EXPERIMENTAL SYSTEMS**



# **Experimental Systems**





7

# **Experimental Systems** (Cont.)

### **Properties of the date**

| stônestone | Total volume of<br>pore<br>(cm <sup>3</sup> /g) | Mean pore<br>diameter<br>(nm) | BET surface<br>area<br>(m²/g) |
|------------|-------------------------------------------------|-------------------------------|-------------------------------|
| NDS        | 0.21                                            | 2.31                          | 85.74                         |
| PADS       | 0.55                                            | 2.48                          | 908.6                         |

### **Adsorption Tests**

- Carried out at 20°C
- 3g of adsorbent with MG
- Shaking at 250 rpm
- Measuring initial and final concentr
- Mass balance

(amount of dye adsorbed = amount of dye removed)



### **Two-Stage Batch Adsorber Optimisation**



### MODELING THEORY AND MODELS



# Isotherms

- qe :amount of contaminant adsorbed
- Ce: equilibrium concentration of the contaminant

#### Models:

- Langmuir
- Freundlich
- SIPS

#### Model information:

- Prediction
- Type of adsorption
- Molecular interaction



#### Errors:

SSE, chi-square statistic, gsquare statistic, relative errors, absolute errors, percentage errors, and 1 fractional errors, etc.

# **Isotherms (Cont.)**

### Langmuir isotherm

$$q_{e} = \frac{q_{m} b C_{e}}{1 + bC_{e}}$$

- •• (mg/gg/gg)gadscorption capacitycoonstant
- b (L/mag) e en er gy constant
- Assumptions:
- Ideal gas behavior of adsorbate
- Molecules do not interact among each other
  - Uniform monolayer adsorption

Freundlich isotherm  $q_e = k_F C_e^{\frac{1}{n}}$ 

- axd sorption capacity
  constant
- m: constant (ty stanface heterogenieity)

#### Assumptions:

- Empirical equation
- Multilayer adsorption
- Heterogeneous system

SIPS isotherm  $q_{e} = \frac{q_{m} K_{LF} C_{e}^{1/n_{LF}}}{1 + K_{LF} C_{e}^{1/n_{LF}}}$ 

- kLFFLEOnstant
- · :"isothernmexponent

Assumptions:

- Combination of Langmuir and Freundlich
- High concentrations ~ Langmuir

# RESULTS



### Isotherm Study Parameters

| Isotherms        |                 | PADS  | RDS     |
|------------------|-----------------|-------|---------|
|                  | b               | 0.174 | 0.00583 |
| Langmuir Model   | q <sub>m</sub>  | 64.7  | 29.5    |
|                  | SSE             | 52.4  | 3.53    |
|                  | k <sub>F</sub>  | 26.7  | 1.22    |
| Freundlich Model | 1/n             | 0.165 | 0.476   |
|                  | SSE             | 404   | 16.8    |
|                  | K <sub>LF</sub> | 14.8  | 0.203   |
| SIPS Model       | a <sub>LF</sub> | 0.221 | 0.0016  |
|                  | b <sub>LF</sub> | 0.840 | 1.34    |
|                  | SSE             | 36.2  | 1.30    |

### Isotherm Study Results (Cont.)

**SIPS Isotherm** 



2

#### NDS

#### PADS



### Single Stage vs Two Stage Adsorption

#### **Amount of PADS adsorbent required**

| Removal %             | 99.50% |           | 95%          |              |
|-----------------------|--------|-----------|--------------|--------------|
| C <sub>o</sub> (mg/L) | S (g)  | S1+S2 (g) | <b>S (g)</b> | S1+S2 (g)    |
| 50                    | 11.5   | 2.5       | 2.2          | 1.2          |
| 100                   | 13.5   | 3.5       | 3.1          | 2.1          |
| 150                   | 15.1   | 4.2       | 3.9          | 2.8          |
| 200                   | 16.4   | 5.0       | 4.7          | 3.6          |
| 250                   | 17.7   | 5.9       | 5.5          | 4.2          |
| 300                   | 18.8   | 6.4       | 6.2          | 5.0          |
| 350                   | 19.9   | 7.5       | 7.0          | 5.5          |
| 400                   | 21.0   | 8.3       | 7.7          | 6.2          |
| 450                   | 22.0   | 9.2       | 8.5          | 7.0          |
| 500                   | 23.0   | 10.0      | 9.2          | 7.5 <b>1</b> |

5

### CONCLUSION



# Conclusion

- Date pits are hard lignocellulosic materials with high carbon content and low impurities, and are excellent precursors for the production of activated carbons
- Langmuir-Freundlich (SIPS) isotherm is the best fit among the studied isotherms for both adsorbents and should be used for design purposes
- The total amount of adsorbent increases with increasing initial concentration of malachite green dye, higher removal rate, and with an increase in the dye solution volume
- The two-stage system resulted in a decrease of around 33% of the total adsorbent requirement compared to the one-stage system to remove the same amount of MG
- For a commercial treatment process, the economic comparison between the adsorbent saving versus the increased cost of the two-stage adsorber over the single-stage adsorber needs to be investigated



عـضـو فـي مـؤسـسـة قـطـر Member of Qatar Foundation

### Thank You Any Questions?