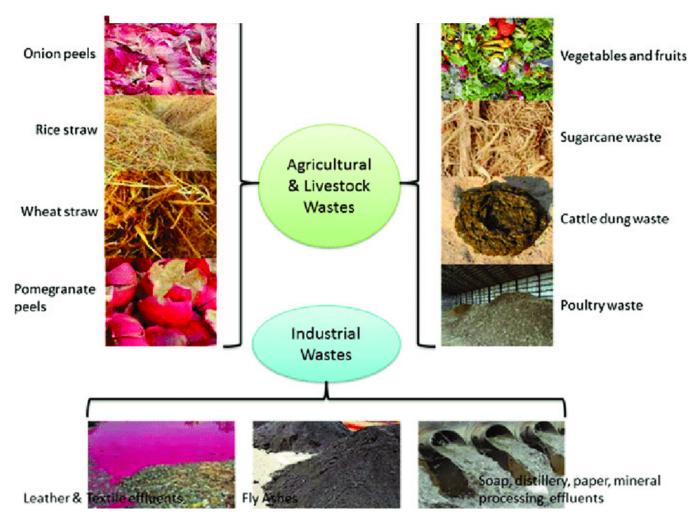


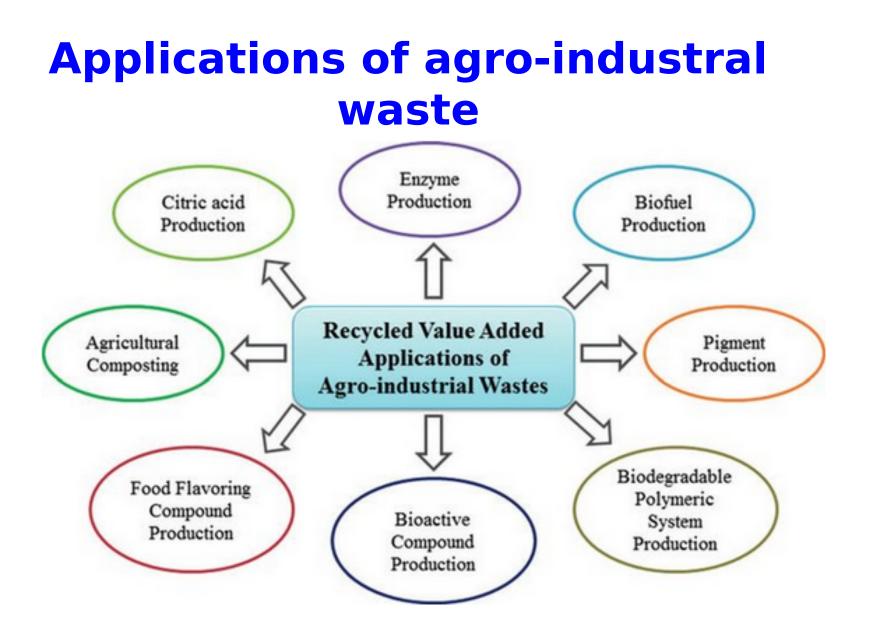
Aydin Adnan Menderes University Department of Biosystems Engineering **Opole University of Technology** Department of Processing Technology

Combustion behaviour of agroindustrial and livestock waste blends

Małgorzata Wzorek


Ersel Yilmaz

Anna Król


Robert Junga

Heraklion 2019

Agro-industrial Waste

Source: M.Yusuf, Handbook of Ecomaterials, 2017

The aim of the work is to study thermal decomposition of selected agro-industrial waste and animal livestock burned alone and their blends via termogravimetric analyses to determinate the conditions of the combustion process for their application as fuel.

Materials

Turkey

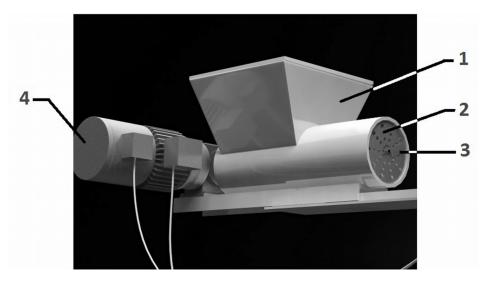
Cotton stalk (CS)

Poland

Rapeseed oil cake (ROC)

Cow manure (COM)

Camel manure (CAM)


Materials

In order to identify the blends - pellets, individual symbols were attributed to them:

- CAM90 90% camel manure and 10% cotton stalk
- CAM80 80% camel manure and 20% cotton stalk
- COM90 90% cow manure and 10% rapeseed oil cake
- COM70 70% cow manure and 30% rapeseed oil cake

Pelletization

1 - dosing funnel equipped with a feeding screw, 2 - replaceable sieve, 3 - cutting element,
 4 - feeding screw motor.

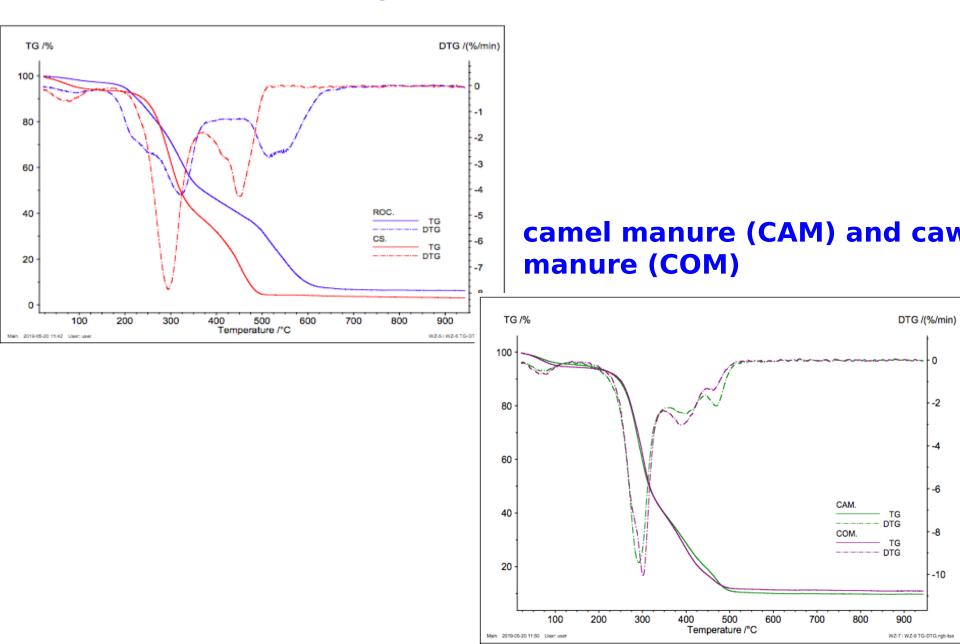
Pellets produced on the basis of animal waste and agro-industrial waste

0% camel manure and 10% cotton **30**% cow manure and 30% rapeseed oil cake CAM90 COM70

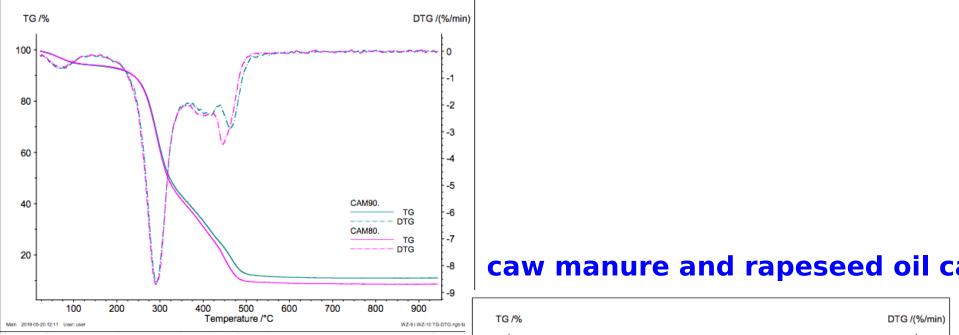
Methods

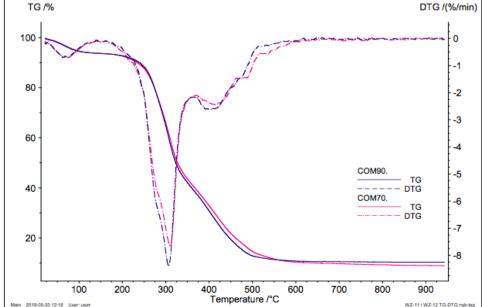
1. The energy parameters:

- moisture PN-EN ISO 18134
- ash PN-EN ISO 18122 and PN-ISO 117
- volatile matter PN-EN ISO 18123
- elementary analysis using Vario Macro Cube analyser
 2.
- higher heating value (HHV) with the use of the IKA Calorimeters C 5000 according to PN-EN 14918:2010 and PN-ISO 1928 standard


2. The simultaneous thermal analysis (TG-DTG) and (DSC) was carried out in NETZSCH STA 449 F3 Jupiter device.

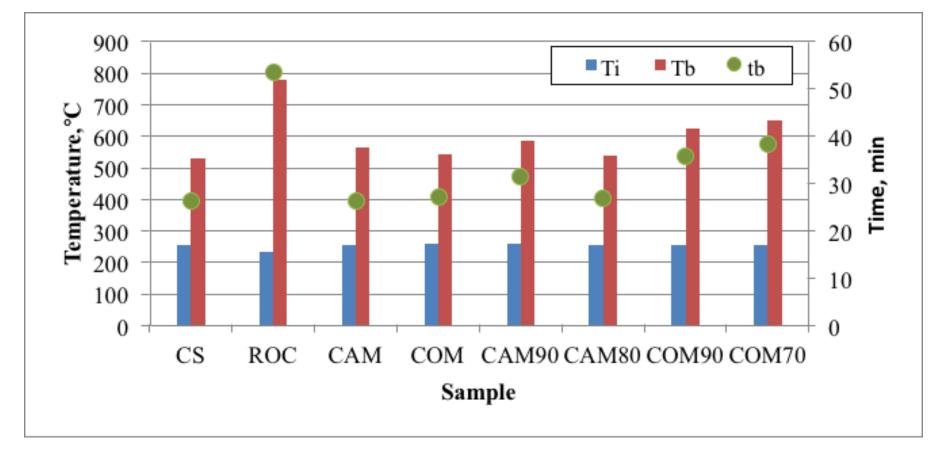
- in a dry air atmosphere with the gas flow of 70 mL/min
- temperature up to 1,000°C
- heating rate: 10 K/min


The proximate and ultimate analysis of tested biomass and blends


Samples	Proxima								
	Moisture	Ash d.m.	Voltaire matter d.m.	С	Н	Ν	S	0	HHV MJ/kg
	WOISture				8				
CS	7.98	4.83	64.90	48.79	5.98	1.47	0.14	58.80	17.09
ROC	11.66	6.47	66.31	50.66	6.83	5.89	0.68	62.74	20.23
CAM	57.43	9.09	64.28	47.75	5.86	1.97	0.33	60.41	17.43
СОМ	84.21	12.12	61.49	48.09	6.13	1.72	0.25	60.01	17.10
CAM90	50.20	8.4	51.82	47.65	6.10	1.94	0.25	60.64	17.70
CAM80	46.54	8.24	62.36	47.88	6.01	1.73	0.24	60.10	17.51
COM90	74.60	11.43	59.97	48.72	6.39	2.26	0.29	60.22	17.48
COM70	62.00	9.89	66.97	49.20	6.48	3.03	0.39	60.70	18.08

TG/DTG curves: cotton stalk (CS) and rapeseed oil cake (ROC)

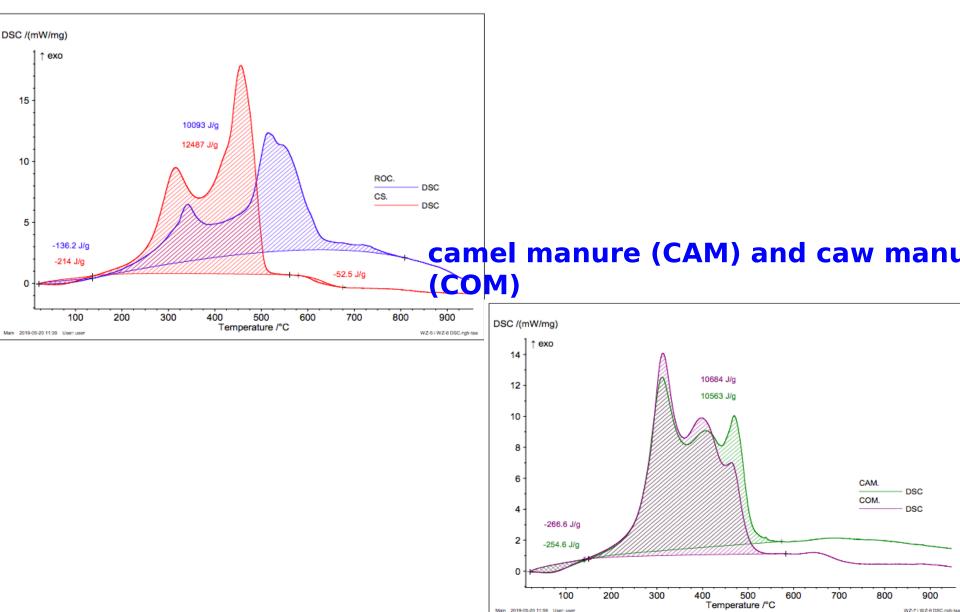
TG/DTG curves of blends: camel manure and cotton stalk (CAM)



Temperature ranges of combustion stages

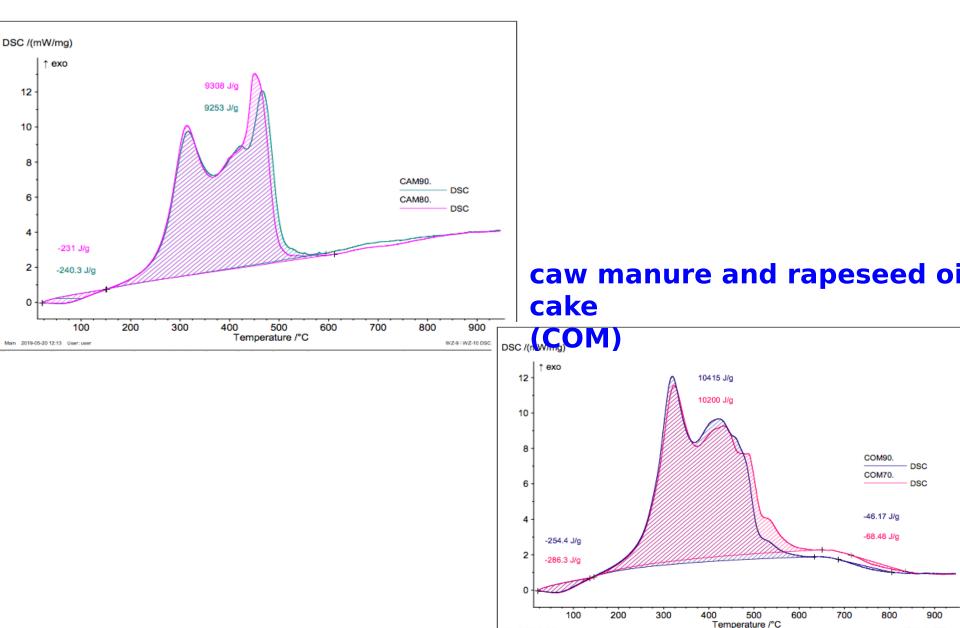
Sample	Stagell	StageIII	StageIV		
	°C	°C	°C		
CS	176-372	372-530	-		
ROC	150-420	420-781	-		
САМ	157-360	360-445	445-565		
СОМ	158-347	347-448	448-545		
CAM90	163-365	365-440	440-585		
CAM80	156-362	362-421	421-540		
COM90	152-368	368-625	-		
COM70	160-371	371-468	468-652		

Ignition temperature T_i, temperature of end combustion T_b and total combustion time t_b


The maximum values of peaks on the DTG (Differential Thermogravimetry) and DSC (Differential Scanning

Calorimetry) curves and their temperatures at

	Stage II				StageIII				StageIV			
	DTG		DSC		DTG		DSC		DTG		DSC	
Sample	Mass loss rate	T _{II}	Max. heat release	T _{Max II}	Mass loss rate	T _{III}	Max. heat release	$\mathrm{T}_{\mathrm{Max~III}}$	Mass loss rate	T _{IV}	Max. heat release	T _{Max} IV
	%/min	°C	MW/mg	°C	%/min	°C	MW/mg	°C	%/min	°C	MW/mg	°C
CS	-7.86	294.6	9.50	315.7	-4.27	449.1	17.87	455.6	-	-	-	-
ROC	-4.23	323.8	6.47	341.6	-2.79	515.6	12.35	514.5	-	-	-	-
CAM	-9.45	291.7	12.53	311.5	-2.50	400.0	9.08	406.2	-2.14	468.4	10.04	469.6
СОМ	-10.06	301.2	14.08	313.1	-3.02	385.9	9.90	399.6	-1.41	462.2	7.02	463.3
CAM90	-8.62	291.5	9.75	315.9	-2.39	418.8	8.93	423.7	-2.89	463.0	12.06	465.9
CAM80	-8.69	290.8	10.08	313.5	-2.41	403.4	13.05	451.0	-3.48	445.3	-	-
COM90	-8.39	306.9	12.08	319.4	-2.63	403.5	9.67	423.5	-	-	-	-
COM70	-7.67	310.3	11.56	323.2	-2.44	415.1	9.27	433.0	-1.46	486.6	7.71	487.7


DSC curves of tested biomass

cotton stalk (CS) and rapeseed oil cake (ROC)

DSC curves of blends

camel manure and cotton stalk (CAM)

Conclusions

- Thermal degradation of studied biomass and their blends shows three main stages: moisture evaporation, volatilization of the light molecules, and char combustion.
- For combusting blends, what has a decisive impact on the burning profile is the component occurring in the highest amount. The effect grows stronger as there is more of this component.
- Blend COM70 (70% cow manure and 30% rapeseed oil cake) is recommended to application as a fuel because of proper energy parameters and combustion behaviour as well as mechanical strength of pellets.

Thank you for your attention