

NATIONAL OPEN ACCESS SCIENTIFIC CENTRE FOR FUTURE ENERGY TECHNOLOGIES

Investigation of emission of alkali radicals during combustion of single wood and straw biomass pellet under the high temperature using FES method

M. Sadeckas, N. Striūgas, H. Wang

WtE commissioning engineer at Steinmüller Babcock Environment GmbH Lithuanian Energy Institute, Laboratory of Combustion Processes, Breslaujos str. 3, LT-44403 Kaunas, Lithuania

> 7th International Conference on Sustainable Solid Waste Management, 26-29 June 2019, Heraklion, Crete Island, Greece

Lithuanian Energy Institute (LEI) is internationally recognized energyrelated research, development and innovation (R&D&I) competence center.

Located in KAUNAS city

Future aims of WtE plants in Lithuania (on going projects)

WtE plant in Kaunas city 24 MWe and 70 MWt Fuel: waste

WtE plant in Vilnius city 92 MWe and 229 MWt Fuel: waste and biomass

Biomass is an widely spread future fuel and is used in Lithuania in innumerable applications as a renewable energy source. As this waste comes from forest residues, agriculture organic matter, its environmental and economic feasibility have made it a competitive alternative to traditional solid fossil fuels. With the growth of the biomass usage, the quality of the feedstock for energy production becomes an issue when the feedstock variety increases.

The main problem and the relevance of research work

Poor quality biomass growth in the district heating sector, WtE and biomass power plants

- To investigate the regularities of chemiluminescence phenomena occurring during the biomass pellet combustion process.
- In this work, chemiluminescence detection is apply to measure the emission intensity of Na, K and Ca during the combustion of wood and straw pellets doped with different concentrations of selected elements.

Schematic of the formation processes of the main ash-related issues

Method of chemiluminescence

 The phenomenon of emission or luminescence is characterized by quantum leaps. Each molecule has a series of filled and empty electronic levels. The absorption of light quantum gives the molecule extra energy, which results in an electron leap from an energetically lowered orbital to a higher, non-filled molecular electronic orbital. This state of the molecule is unbalanced and unstable, so the molecule emits a light quantum of longer wavelength, "returning to the main" equilibrium state.

Spectroscopy equipment

- Using the spectroscopy method, flame monitoring is carried out and the radiating element ions in a certain wavelength range are captured using the ICCD camera Andor iStar DH734-18U-E3 spectroscopic system.
- Interference filters are used to help recording the intensity of radiation of different radicals with ICCD camera

Filter	K	Na	Са
Wavelenght, nm	770 ± 2 nm	590 ± 2 nm	620 ± 2 nm

Biomass pretreatment procedure

Raw biomass	Milled	d biomass	→ .	Washing NO ₃ /pH=2 /1b/60°C	Filtering- drying at 105°C	Doping wi K, Na, Ca salts		Filtering- drying at 105°C
Parameter	Wood pellet	Straw pellet						and pelletizing
Moisture, wt.%	5.8	8.28			1			
HHV, MJ/kg	17.49	16.56				14		
_HV, MJ/kg	16.25	15.33		Paramete	er	K, ma/ka	Na, ma/ka	Ca, ma/ka
Ash, wt.%	0.2	4.9		Wood		шу/ку	шу/ку	шу/ку
C, wt.%	49.59	45.84		washed		n d	n d	314
H, wt.%	5.36	5.16		washed	+ doned 0 5%	/8/0	5845	52/18
O, wt.%	45.05	47.67		washed	+ doped 0.570	1898/	27584	17576
N, wt.%	0.01	1.12		washed	+ doped 5%	56224	49378	42360
S, wt.%	0.01	0.21						
<, mg/kg	339	16481		Straw				
Na, mg/kg	45	45.1		washed		1054	n.d.	1079
Ca, mg/kg	705	2638		washed	+ doped 0.5%	5534	5411	5709
Diameter, mm	13	13		washed	+ doped 2%	21356	21450	19500
_ength, mm	10	10		washed	+ doped 5%	53458	48965	48562

Experimental setup

K*, Ca* and Na* intensities of the pellets doped with 0.5%, 2% and 5% of selected minerals during combustion process

14

Relative intensities dependence on the internal pellet temperature in surrounding gas flame 1100-1200 °C temperature

Application in real working conditions

Computer

Scope of biomass combustion boiler Possible K*, Na* measuring points Higher temperature zones 1st Flue gas pass 2nd Flue gas pass 3rd Flue gas pass

Conclusions

- The K*, Ca* and Na* emission profiles can be correlated with the combustion period. Comparison of the release intensities of inorganic content shows that the combustion temperature has the most important effect. The experimental results show that the emission intensity of K* and Na* was noticeable bright in higher temperature zones from 900 °C to 1200 °C
- Calcium keeps stable and does not evaporate under given conditions and shows extra stability during wood and straw combustion.
- It can be concluded, that chemiluminescence method can be used for monitoring the release of alkali species (mainly potassium) as indicator in biomass furnaces at high temperature zones. This method can be used in conjunction with other boiler auxilary systems to reduce emissions or prevent ash-slagging occurrence.

NACIONALINIS ATVIROS PRIEIGOS ATEITIES ENERGETIKOS TECHNOLOGIJŲ MOKSLO CENTRAS OPEN R&D

Thank you for your time!

Marius Sadeckas

Marius.Sadeckas@lei.lt