School of Mechanical engineering, Environmental ,engineering program

Production of nanocellulose from

Israeli paper mill sludge by ozonation pretreatment

followed by recyclable maleic acid

Peretz, E. Sterenzon, Y. Gerchman, V. Kumar Vadivel, T. Luxbacher, H. hydrolysis

Israeli Ministry of Environmental Protection, 2014

- 4.8 million tons of MSW are produced annually.
 - The predominant types of municipal wastes are of organic source with 34% of food residues and 24% of paper and cardboard (by weight).
- Total amount of paper and cardboard wastes are about
 1.15 million ton/year

2

7th international conference on sustainable solid waste management-Heraklion 2019 • Each year ~ 0.23 million

Recycled Paper Sludge

31,000 tons of RPS in Israel alone!

What can we do with it???

As paper is made from wood material

RPS contain cellulose, ?Lignin

RPS characteristics.

Isoelectric point (IEP)

pH~2

Insoluble lignin	$8.22\% \pm 0.22\%$
Soluble lignin (ABSL)	$10.71\% \pm 2.21\%$
Crystallinity index (CI)	$70.68\% \pm 0.55\%$
Crystalline cellulose	$75.3\% \pm 20.2\%$
Ash	$16.64\% \pm 2.21\%$

Nanocellulose

Moon et al. 2010

Properties:

- Low density (1.6 gr cm-3)
- High light transmittance
- High strength and stiffness
- Surface (-OH) for chemical modifications.
- Biodegradable & biocompatible.
- High surface area.
- Green disposal/ recycle at end of life

end of life. Environmental friend y nanomaterials. Key component in many industrial applications.

Figure 4. Nanocellulose Quality Index based on aspect ratio and crystallinity for various applications.

Bharimalla et al. 2015

Example: Water treatment

Nanocellulose production is not so easy

Based on Bian et al. 2017*

Pre-treatment (De-lignification)

- Very high reaction rate with phenols than sugars/cellulose chains.
- Short half-life (t1/2) in water 20 min. (at 20 °C) – cleaning step is not necessary.
- Nointernational conference obsisterinable solid waste management- Heraklion 2019

7th international conference on sustainable solid waste management- Heraklion 2019

11

Acid hydroly

Borjensson et al. 2019

nm in length 571 ± 2,431 **nm in width** 37 ± 165

Conclusions

- RPS contain high amounts of crystalline cellulose, making it a very good source for NC production.
- Ozonation was examined as a pretreatment stage for NC recovery from RPS.
- Ozonation showed to result in effective lignin removal from
- the RPS.
 NC yield remained low (~1 %wt), even after high ozone doses, suggesting
- *Concession is required and iterations Concession is required and iterations Concession is required and iterations*

:For more Peretz et al. (2019), *Carbohydrate Polymers*, 216:343-351

Thank

7th internatives://doi.org/1011016/jdcarpola2019.0410aklion 2019