

Discovery of a novel thermophile β-galactosidase, *Tt*bGal1, for the production of prebiotic oligosaccharides from acid whey

Zerva, A.¹, Limnaios, A.², Taoukis, P.², Topakas, E¹.

¹Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece ²Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece

Heraklion, Crete, 27 June 2019

β- galactosidases (E.C. 3.2.1.23)

 glycosyl hydrolase → hydrolysis of lactose to glucose and galactose

β-Galactosidases in dairy industry lactose hydrolysis in dairy products production of lactose-free products, for consumers with lactose intolerance

 β-galactosidases also catalyze the transgalactosylation reaction, producing galactooligosaccharides

GOS are significant prebiotics •improve the gut health •promote the growth of the probiotic intestinal bacterial flora. What about the use of a low-cost material as substrate, which would not compete with food and feed raw materials?

Whey as a waste material

Disposal methods
Spraying in fields
Discharge in water bodies
Municipal sewage system
Animal feed

 Issues with current disposal methods
 Smell, salt and heavy polluting load
 High BOD (30.000-35.000 ppm) and COD (60.000-80.000 ppm)

- 100 L of milk used for cheese \rightarrow 80-90 L of whey
- Annual production of whey: 160 million tons, sweet whey is 22.5 million tons
 - Acid whey production is increasing steadily, due to increasing popularity of the Greek strained yoghurt worldwide

Production of GOS from whey

- Good yield with β-galactosidases from A. oryzae and K. lactis in sweet whey (32.5%)
 - Most known β-galactosidases are active in neutral pH
- For valorization of acid whey, *thermophile, acidic* β -galactosidases

are needed

Discovery and characterization of novel enzymes

Bioinformatic analysis

0.20

Molecular Phylogenetic analysis by Maximum Likelihood method

were conducted in MEGA7 (Kumar

Thielavia terrestris 2047729 structure prediction based on beta-galactosidase from *Aspergillus oryzae* (61.22% identity) with SWISS-MODEL

Screening of recombinant clones

substrate

Characterization of purified TtbGal1

Characterization of purified

Kinetic parameters

	Km (mM)	Kcat (min ⁻¹)	k _{cat} /K _m (mM min)⁻¹	Specific activity (U mg ⁻¹)
oNPhG	0.18 <u>+</u> 0.02	275280 <u>+</u> 7932	1522566 <u>+</u> 187443	1956.5 <u>+</u> 117.7
lactose	12.4 <u>+</u> 1.4	24636 <u>+</u> 759	1981 <u>+</u> 233	95.3 <u>+</u> 10.6

Effect of salts on the activity of TtbGal1.

Salts	Residual activity (%)			
	1 mM	10 mM		
Control	100	100		
MgCl ₂	79.8 <u>+</u> 13.7	105.9 <u>+</u> 0.6		
$CuCl_2$	93.4 <u>+</u> 5.5	97.2 <u>+</u> 2.9		
NaCl	86.5 <u>+</u> 7.2	87.7 <u>+</u> 2.6		
$MnCl_2$	96.2 <u>+</u> 2.1	-		
KCI	86.8 <u>+</u> 3.1	91.9 <u>+</u> 3.4		
CaCl ₂	94.0 <u>+</u> 8.8	-		
NaN_3	94.8 <u>+</u> 10.5	-		
C				

Very satisfactory activity in the presence of a variety of salts → promising property for application in untreated acid whey

Optimization of GOS production in defined lactose solutions

Enzyme load

Substrate concentration

Maximum GOS concentration: $1.46 \pm 0.02 \%$ (w/v)

Maximum GOS concentration: $3.26 \pm 0.04 \%$ (w/v)

TtbGal1-mediated GOS synthesis from acid whey

Untreated whey 3.4% (w/v) lactose

Concentrated whey 9.28% (w/v) lactose

TtbGal1-mediated GOS synthesis from acid whey

Conclusions

- A novel fungal β-galactosidase, *Tt*bGal1, was heterologously expressed, purified and characterized
- *Tt*bGal1 is *thermostable* and is optimally active in *acidic pH*
- Satisfactory activity in the presence of salts
- GOS production with yields up to 19.4%
- Valorization of acid whey as a substrate to produce GOS with prebiotic activity

Work in progress...

- Further optimization is needed
- LC-MS analyses to determine the chemical nature of the produced GOS
- Scale-up of the process

NTUA IndBioCat Group

http://www.chemeng.ntua.gr/indubiocat/index.html

Evangelos Topakas, Assistant Professor

PostDoc Researchers

A.Karnaouri

A. Paz A. Zerva

PhD candidates:

- E. Nikolaivits, A.Chalima,
- G. Assimakopoulou,
 - G. Dedes,
 - C. Pentari

NTUA -Food Engineering Research Team (FERST) Prof. Petros Taoukis PhD candidate A. Limnaios

Thank you for your attention!

