Modeling and optimization of bioleaching process to recover heavy metals from spent catalyst #### Dr.R.Satish Babu **Associate Professor** #### Contents - Introduction - Need for the study - Objective of the research - Experimental Design - Results - Discussion #### Global refinery catalysts market share, by application, 2018 (%) Source: www.grandviewresearch.com #### Source. https ://www.hydrocarbonprocessing.com/news/2018/07/global-refinery-catalyst-market-worth-over -58b-by-2025 #### **Leaching of spent catalyst** #### Introduction - Demand for catalyst : fertilizers, petroleum refinery and other related industries - The catalysts are composed of various metals like Ni, Co, Cu etc - Recycling of such waste is an important subject not only from the point of waste treatment but also from the recovery of valuable materials ### Need for the study - To develop an economically feasible, technically viable and environmental friendly bioleaching process for metals recovery from the spent catalyst. - To develop mixed culture of two strains of Fe/S oxidizing bacteria A. ferrooxidans, and Aspergillus niger in leaching metals from spent catalyst ### Objectives - Identifying a group of microbes for the effective metal recovery from spent catalyst using bioleaching process. - Leaching process parameters in bioleaching route which will ultimately help in design of industrial scale leaching process. - Determination of optimum values of metals extraction. ### **Experimental Design** - Collection of Aspergillus niger and Acidithiobacillus ferrooxidans from National Collection Of Industrial Microorganisms (NCIM), Pune, India. - Fresh and spent catalyst was provided by petroleum industry (BPCL). The spent catalyst was pre-treated by heating in a furnace at 600°C for two hours. - Then the pre-treated spent catalyst was gently and sieved to separate fraction of desired particle size. - The sieved material was used for bioleaching purpose and composition of spent catalyst consists of 12% Mo, 5.8% Ni, 3% Cd, and 2.5% Cu. #### Bioleaching feasibility study #### Work flow of bioleaching Sub-Culture of Aspergillus niger a) before subculture Sub-Culture of *Acidithiobacillus ferrooxidans* a) before subculture b) after subculture 12% Mo 5.8% Ni 3% Cd 2.5% Cu #### **Batch Studies** - The range of variables taken on the basis of batch experiments. - pH (1-5), Temperature (10-40°C), Contact time (1-10 days) as test variables and metal removal percentages as the response are considered in the optimization process. #### **Batch studies** Leaching of different metals at Temperature 25°C and 170 rpm at different days (a) 1 day (b) 5.5 days (c) 10 days , $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \frac{1}{2}$ Leaching of different metals at Temperature 32.5°C and at different days (a) 1 day (b) 5.5 days (c) 10 days, shaking speed 170 rpm Leaching of different metals at Temperature 40°C and at different days (a) 1 day (b) 5.5 days (c) 10 days, shaking speed 170 rpm Leaching of different metals at pH 1, Temperature 32.5°C Leaching of different metals at pH 3, Temperature 32.5°C Leaching of different metals at pH-5, Temperature -32.5°C # Optimization by Response Surface (RSM) Optimization # Optimization of process for Cadmium removal using RSM Cd removal (%) =+16.92-10.23*A+11.32*B+5.52*C+9.08*AC-13.84 *BC +2.39 *A²+ 25.87 *B²+7.85*C² ## Optimization of process for Copper removal using RSM Cu removal (%) = 57.96+5.57*A+2.34*B+19.89*C-0.81*AB+0.60*AC+12.84*BC-19.50* A²+25.38*B²-25.47*C² # Optimization of process for Molybdenum removal using RSM Mo removal (%) = +8.72-7.56* A+25.90* B-12.75* C- Mo removal (%) = +8.72-7.56* A+25.90* B-12.75* C-7.33* AB-13.05* AC-13.80* BC+4.86* A²+26.87* B²+1.98* C² #### **Optimization of process for Nickel** ## Optimum values of different parameters predicted by RSM | Soluti
on
No | рН | Temp
(°C) | Time
(days) | %Cd
removal | %Cu
removal | %Mo
remova
I | %Ni
remov
al | |--------------------|-----|--------------|----------------|----------------|----------------|--------------------|--------------------| | 1 | 3.0 | 40.00 | 4.50 | 55.59 | 79.99 | 66.89 | 65.84 | | 2 | 3.0 | 40.00 | 5.40 | <u>55.48</u> | 80.39 | 66.62 | 65.86 | | 3 | 3.0 | 40.00 | 6.54 | 36.38 | 81.26 | 11.18 | 51.34 | #### **CONCLUSIONS** - At pH 3, contact time of 5.4 days and at temperature 40°C it is found that optimum leaching of metals i.e Cadmium 55.48%, Copper 80.39%, Molybdenum 66.62% and Nickel 65.86%. - These results suggest that optimizing the bioleaching method using Acidithiobacillus ferrooxidans and Aspergillus niger could facilitate the creation of an alternative to conventional waste treatment methods.