Valorization of hemicellulose-biomass side streams via catalytic hydrogenation into value added chemicals and fuels

E. Mitsiakou ¹, A. Margellou ¹, K. Rekos¹ and Konstantinos Triantafyllidis¹,²*

¹ Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
² Chemical Process and Energy Resources Institute, CERTH, 57001 Thessaloniki, Greece

7th International Conference on Sustainable Solid Waste Management
AQUILA ATLANTIS HOTEL Heraklion, Crete Island, Greece
26 – 29 June 2019
Utilization of Biomass

FOSSIL FUELS

BIO-BASED

Fuels
- Bioethanol
- Biodiesel
- Green Diesel

Platform Chemicals
- Furfural
- Levulinic acid
- HMF
- Biooil

Plastics
- Poly(3-hydroxybutyrate) biodegradable plastic

BIOMASS

Sustainability
(Bio)Catalysis
A successful commercial example of biomass derived plastic replacing PET

YXY Technology

Dehydration Oxidation Polymerization

Glucose → MMF (5-methoxy methyl furfural) → FDCA → PEF

Methyl Levulinate

Plant based Feedstock

https://www.avantium.com/yxy/yxy-technology/
Lignocellulosic Biomass

Structure
- **Cellulose:**
 - General formula: \((C_6H_{10}O_5)_n \)
 - MW: 300,000-500,000

- **Hemicellulose:**
 - General formula: \((C_5H_8O_4)_n \)
 - Consists of \(C_5 \) & \(C_6 \) sugars, uronic acids, acetyl units

- **Lignin:**
 - Phenolic monomers

Composition

- **Cellulose:**

- **Hemicellulose:**
 - General formula: \((C_5H_8O_4)_n \)

- **Lignin:**
 - Phenolic monomers

- **Cellulose:** 30-50%, **Hemicellulose:** 20-40%, **Lignin:** 15-25%

- Others, 5-35% - Ash 3-10% (Si,Al,Ca,Mg,K,Na), Extractives: Resins, Phenols, Sterols, etc
Lignocellulosic biomass raw materials

- Agricultural and forestry residues/waste (wheat straw, trimmings, tree branches)
- Industrial wood processing residues (e.g. sawdust)
- Food industry waste (e.g. kernels, shells)
- Municipal solid waste (e.g. waste paper)
- Perennial or annual crops with high yield 1-4 ton/1000m² year (e.g. eucalyptus, pseudoacacia, willow, miscanthus, switch grass, cellulosic sorghum,..)

Cereals (328.52Mt)
- *Wheat* (148.83Mt)
- *Maize* (80.37Mt)
- *Barley* (50.10Mt)
- ***+ others*** (49.22Mt)

Oil-bearing crops (73.10Mt)
- *Rapeseed* (53.99Mt)
- *Sunflower* (14.63Mt)
- ***+ others*** (4.48Mt)

Permanent Crops (21.86Mt)
- *Olive trees* (17.11Mt)
- *Vineyards* (4.08Mt)
- ***+ others*** (0.68 Mt)

Sugar-starchy crops (13.41Mt)
- *Sugar beet* (9.23Mt)
- *Potatoes* (4.18Mt)

European Commission Report, 2018
Biomass (agricultural) residues in Greece

Center for Renewable Energy Sources & Saving, Greece, 2010
Integrated lignocellulosic biomass valorization (Bio-refinery)

Lignocellulosic biomass → Hydrothermal Pretreatment Neat + H₂O → Cellulose + Lignin

Cellulose

Hemicellulose (xylan/xylose, furfural, acetic acid)

- Catalytic “transfer” hydrogenation → Furfural, furfuryl alcohol, 2-methylfuran, 2-methyltetrahydrofuran
 - Platform chemicals, Fuel additives, Resins

Lignin

- Enzymatic hydrolysis
- Catalytic hydrogenolysis → Alkoxy-phenols, Alkyl-phenols
 - Aliphatic, esters
 - BTX, PAHs
- Catalytic fast pyrolysis
 - Platform chemicals, Resins, Polymers

- Sugar Alcohols
 - Catalysts, Platform chemicals, Fuel additives, Polymers

平台化学品、燃料添加剂、聚合物

- Ethanol Fuels, Platform chemicals, fuel additives, polymers
Hydrothermal pre-treatment (in pure H₂O)

Biomass

Autoclave reactor

Solid product
Cellulose + Lignin

Enzymatic Hydrolysis

Liquid product
Hemicellulose monomers and oligomers, xylose, furfural, acetic, formic acid, etc.

Experimental conditions:
- Temperature: 130-220°C
- Time: 15-180 min
- LSR: 15
- Stirring: 400 rpm

Severity factor (logRo)

\[R_0 = t \cdot \exp \left(\frac{T-100}{14.75} \right) \]

Generalized reaction scheme

Hemicellulose hydrolysis at subcritical water

- Self-catalyzed hydrolysis (pH 5 → 2.5)
- The catalyst (acetic acid) is a biomass component

Cellulose hydrolysis at subcritical water

Sugars dehydration products

- Furfural
- 2-Furoic acid
- Formic acid
- Levulinic acid
- Formic acid
Evolution of main structural components in hydrothermally treated solids
Xylose and furfural concentration vs. % hemicellulose removal

Mostly as xylan oligomers
Dominant pathways/products depend on catalyst type, reaction parameters and solvent (acting or not as H-donor for inducing transfer hydrogenation)

Furfural derived chemicals and fuels

Catalytic hydrogenation experiments of hemicellulose stream

Solvent, H_2 source

T, Catalyst

Furfural + Solvent

Furanic compounds: Furfuryl alcohol, 2-MF, 2-MTHF, etc.

- **Solvent:** Ethyl acetate, H_2O, EtOH & IPA (as H_2 donor - transfer hydrogenation)
- **H_2 gas:** 30 bar at room temp.
- **Temperature:** 180 °C
- **Catalyst:** Ru, Pd, Pt, Cu, Ni supported on Micro/mesoporous Activated Carbon
Catalysts for furfural hydrogenation

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Total SSA (m²/g)</th>
<th>Total pore volume (cc/g)</th>
<th>Micropore area (m²/g) / volume (cc/g)</th>
<th>Meso/macro-pore & external area (m²/g) / volume (cc/g)</th>
<th>Crystal size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activated carbon (AC)</td>
<td>1281</td>
<td>0.946</td>
<td>841 / 0.343</td>
<td>440 / 0.603</td>
<td>-</td>
</tr>
<tr>
<td>3%Pt/AC</td>
<td>1180</td>
<td>0.847</td>
<td>759 / 0.309</td>
<td>421 / 0.538</td>
<td>13.6</td>
</tr>
<tr>
<td>3%Pd/AC</td>
<td>1338</td>
<td>0.947</td>
<td>886 / 0.362</td>
<td>452 / 0.585</td>
<td>16.6</td>
</tr>
<tr>
<td>5%Ni/AC</td>
<td>1251</td>
<td>0.884</td>
<td>831 / 0.343</td>
<td>420 / 0.541</td>
<td>6.8</td>
</tr>
<tr>
<td>10%Ni/AC</td>
<td>1246</td>
<td>0.895</td>
<td>806 / 0.329</td>
<td>440 / 0.566</td>
<td>Ni(0) 23.5- NiO 6.1</td>
</tr>
<tr>
<td>10%Cu/AC</td>
<td>1172</td>
<td>0.828</td>
<td>768 / 0.313</td>
<td>403 / 0.515</td>
<td>Cu(0) 23.2 - Cu₂O 16.6</td>
</tr>
<tr>
<td>5%Ni-15%W/AC</td>
<td>1025</td>
<td>0.720</td>
<td>678 / 0.276</td>
<td>347 / 0.444</td>
<td>Ni(0) 7.8 - WO₂ 9.9 - NiWO₄ 15.5</td>
</tr>
</tbody>
</table>

![Adsorbed N₂ (cc/g, STP) vs. P/P₀](image1.png)

(a) 5%Ni/AC, (b) 3%Pt/AC, (c) 3%Pd/AC, (d) 10%Cu/AC
<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>T (°C)</th>
<th>H₂ (bars)</th>
<th>X (%)</th>
<th>FAL</th>
<th>THFAL</th>
<th>2-MF</th>
<th>2-MTHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>3%Pd/AC</td>
<td>EtOAc</td>
<td>1</td>
<td>180</td>
<td>30</td>
<td>15.6</td>
<td>10.1</td>
<td>0.0</td>
<td>43.4</td>
<td>0.0</td>
</tr>
<tr>
<td>3%Pd/AC</td>
<td>EtOAc</td>
<td>3</td>
<td>180</td>
<td>30</td>
<td>19.6</td>
<td>6.0</td>
<td>0.0</td>
<td>58.4</td>
<td>0.0</td>
</tr>
<tr>
<td>3%Pd/AC</td>
<td>EtOAc</td>
<td>6</td>
<td>180</td>
<td>30</td>
<td>29.3</td>
<td>3.6</td>
<td>0.0</td>
<td>58.6</td>
<td>0.0</td>
</tr>
<tr>
<td>3%Pd/AC</td>
<td>EtOAc</td>
<td>9</td>
<td>180</td>
<td>30</td>
<td>34.8</td>
<td>5.8</td>
<td>1.1</td>
<td>74.6</td>
<td>11.5</td>
</tr>
<tr>
<td>3%Pd/AC</td>
<td>EtOAc</td>
<td>6</td>
<td>180</td>
<td>30</td>
<td>19.6</td>
<td>6.0</td>
<td>0.0</td>
<td>58.4</td>
<td>0.0</td>
</tr>
<tr>
<td>3%Pd/AC</td>
<td>EtOAc</td>
<td>6</td>
<td>220</td>
<td>30</td>
<td>43.4</td>
<td>4.4</td>
<td>3.8</td>
<td>69.4</td>
<td>13.2</td>
</tr>
</tbody>
</table>

Effect of reaction time & temperature

![Furfural conversion diagram](image-url)
Effect of catalyst type

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>T (°C)</th>
<th>H₂ (bars)</th>
<th>X (%)</th>
<th>FAL</th>
<th>THFAL</th>
<th>2-MF</th>
<th>2-MTHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>3%Pd/AC</td>
<td>EtOAc</td>
<td>3</td>
<td>180</td>
<td>30</td>
<td>19.6</td>
<td>6.0</td>
<td>0.0</td>
<td>58.4</td>
<td>0.0</td>
</tr>
<tr>
<td>3%Pt/AC</td>
<td>EtOAc</td>
<td>3</td>
<td>180</td>
<td>30</td>
<td>72.9</td>
<td>3.5</td>
<td>1.5</td>
<td>74.3</td>
<td>0.0</td>
</tr>
<tr>
<td>10% Ni/AC</td>
<td>EtOAc</td>
<td>3</td>
<td>180</td>
<td>30</td>
<td>19.3</td>
<td>21.7</td>
<td>1.3</td>
<td>75.9</td>
<td>0.0</td>
</tr>
<tr>
<td>10%Ni/15%W-AC</td>
<td>EtOAc</td>
<td>3</td>
<td>180</td>
<td>30</td>
<td>53.7</td>
<td>18.0</td>
<td>5.4</td>
<td>42.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- Pt based catalyst were very reactive and selective towards 2-MF (polar, aprotic solvent)
- Ni based catalysts exhibit also high selectivity to 2-MF but activity improvement is needed
Catalytic transfer hydrogenation of furfural (solvent acting as hydrogen donor)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Conversion (%)</th>
<th>FA</th>
<th>THFA</th>
<th>MF</th>
<th>MTHF</th>
<th>iPrOMF</th>
<th>Mass balance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>104</td>
</tr>
<tr>
<td>2</td>
<td>10%Cu/AC</td>
<td>24</td>
<td>22</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>3</td>
<td>3%Pd/AC</td>
<td>47</td>
<td>21</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>3%Pt/AC</td>
<td>93</td>
<td>47</td>
<td>1</td>
<td>24</td>
<td>3</td>
<td>5</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>5%Ni/AC</td>
<td>85</td>
<td>6</td>
<td>1</td>
<td>66</td>
<td>2</td>
<td>3</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td>5%Ni/AC<sup>b</sup></td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>102</td>
</tr>
<tr>
<td>7</td>
<td>5%Ni/AC<sup>c</sup></td>
<td>95</td>
<td>20</td>
<td>1</td>
<td>50</td>
<td>1</td>
<td>1</td>
<td>78</td>
</tr>
<tr>
<td>8</td>
<td>5%Ni/AC<sup>d</sup></td>
<td>87</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>38<sup>e</sup></td>
</tr>
<tr>
<td>9</td>
<td>5%Ni/AC<sup>f</sup></td>
<td>67</td>
<td>38</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>13</td>
<td>103</td>
</tr>
</tbody>
</table>

^a 200 °C, 5 h, 0.35 M furfural in 60 mL isopropanol, 30 bars H₂; ^b 0 bar H₂/200 °C; ^c 0 bar H₂/260 °C; ^d In methanol; ^e Unknown compound eluting at 3.8 min in GC analysis, not included (48 % of total peak area); ^f Spent catalyst recovered after the experiment in entry 5

Ni, Cu, Pt, Pd on micro/mesoporous carbon

An example of the successful collaboration between Greece, France and Spain, involving training/exchange of young scientists within the frame of European COST Action “LIGNOVAL”

Catalytic hydrogenation experiments of “real” hemicellulose stream

Aqueous side-stream from Hydrothermal Pretreatment of biomass (beech wood)

H₂ (30 bar) → 3%Pd/AC

80% FF conversion > 95% selectivity to:

Furfuryl alcohol
Tetrahydrofurfuryl alcohol
Enzymatic hydrolysis optimization (beech sawdust)

Hydrothermal Pretreatment 220 °C, 15 min

Beech wood (Lignocel) Cellulose 42,1%

→ Pretreated solid Cellulose 63,2%

→ Extracted solid Cellulose 77,0%

→ Liquid hydrolyzate Glucose 99,3%

Xylose Furfural Acetic acid

FAL, 2-MF, 2-MTHF

A synergy between thermochemical pretreatment, chemo- and bio-catalysis is necessary for more efficient biomass valorization.
Acknowledgements

Group
Prof. K. Triantafyllidis
Dr. Polykarpos Lazaridis
Dr. Ioannis Charisteidis
Dr. Christos Nitsos
Dr. Apostolos Fotopoulos
Dr. Antigoni Margellou
Dr. Dimitrios Giliopoulos
Dr. George Giannopoulos
Christina Pappa, MSc

Collaborators
Prof. Paul Christakopoulos, Prof. Ulrika Rova, Dr. L. Matsakas (LTU, Sweden)
Prof. Rafael Luque (University of Cordoba)
Prof. Christophe Len (Chimie ParisTech, PSL University)
Prof. Vasile Parvulescu, Prof. Simona Coman (U. Bucharest)
Prof. Dimitrios Argyropoulos, North Carolina State University, USA
Dr. Angelos Lappas, Dr. Stylianos Stefanidis, Dr. Eleni Iliopoulou, Dr. Costas Kalogiannis, Dr. Cryssoula Michailof, Dr. Stamatia Karakoulia (CPERI/CERTH)
Technical staff of LEFH and LIMS in CPERI/CERTH

Funding:

- We acknowledge support of this work by the project “INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management” (MIS 5002495) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

- COST Association