

Valorization of hemicellulose-biomass side streams via catalytic hydrogenation into value added chemicals and fuels

E. Mitsiakou¹, A. Margellou¹, K. Rekos¹ and <u>Konstantinos Triantafyllidis^{1,2*}</u>

¹ Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece ² Chemical Process and Energy Resources Institute, CERTH, 57001 Thessaloniki, Greece

7th International Conference on Sustainable

Solid Waste Management

AQUILA ATLANTIS HOTEL Heraklion, Crete Island,

Greece

26 - 29 June 2019

Utilization of Biomass

A successful commercial example of biomass derived plastic

replacing PET

https://www.avantium.com/yxy/yxy-technology/

Lignocellulosic Biomass

Structure

Source: Ritter S.K., Lignocellulose: A Complex Biomaterial, Plant Biochemistry, 86(49) (2008) 15

Hemicellulose: general formula(C₅H₈O₄)_n

C₅ & C₆ sugars, uronic acids, acetyl units

Lignin:

Phenolic monomers

Cellulose: 30-50%, Hemicellulose: 20-40%, Lignin: 15-25%

Others, 5-35% - Ash 3-10% (Si,Al,Ca,Mg,K.Na), Extractives: Resins, Phenols, Sterols, etc

Lignocellulosic biomass raw

materials

- Agricultural and forestry residues/waste (wheat straw, trimmings, tree branches)
- Industrial wood processing residues (e.g. sawdust)
- Food industry waste (e.g. kernels, shells)
- Municipal solid waste (e.g. waste paper)
- Perennial or annual crops with high yield 1-4 ton/1000m² year (e.g. eucalyptus, pseudoacacia, willow, miscanthus, switch grass, cellulosic sorghum,..)

Olive kernels

Agricultural & forestry Residues/wastes

Miscanthus

Robinia pseudoacacia

Biomass (agricultural) residues in EU-28 (2006-201<u>5)</u>

Maize (80.37Mt)

+ others (49.22 Mt)

Barley (50.10Mt)

Permanent Crops (21.86Mt)

Olive trees (17.11Mt) Vineyards (4.08Mt)

European Commission Report, 2018

Oil-bearing crops (73.10Mt)

 Rapeseed
 Sunflower

 (53.99Mt)
 (14.63Mt)

 + others
 (4.48 Mt)

Sugar beet (9.23Mt) Potatoes (4.18Mt)

+ others (0.68 Mt)

Biomass (agricultural) residues in Greece

non, Eurobionet-biomass survey in Europe, Country report of Greece, 2008nter for Renewable Energy Sources & Saving, Greece, 2

Integrated lignocellulosic biomass valorization (Biorefinery)

Hydrothermal pre-treatment (in pure H₂O)

Solid product

Cellulose +

reactor

Enzymatic Hydrolysis Glucose

40

Liquid product

Hemicellulose

monomers and oligomers, xylose, furfural, acetic, formic acid, etc.

Severity factor (logRo)

$$R_0 = t \cdot exp \frac{(T-100)}{14.75}$$

Experimental conditions:

Temperature : 130-220°C
Time : 15-180 min
LSR: 15
Stirring: 400 rpm

C.K. Nitsos, K.A. Matis, K.S. Triantafyllidis, ChemSusChem, 6 (2013) 110 – 122 C.K. Nitsos, T. Choli-Papadopoulou, K.A. Matis, K.S. Triantafyllidis, ACS Sust. Chem. & Engin. 4 (2016) 4529-4544 C. K. Nitsos, P. A. Lazaridis, A. Mach-Aigner, K. A. Matis, & K. S. Triantafyllidis, ChemSusChem (2019) 12 (6): 1179

Generalized reaction scheme

Hemicellulose hydrolysis at subcritical

Self-catalyzed hydrolysis (pH 5 [] 2.5)

□The catalyst (acetic acid) is a biomass

component

Cellulose hydrolysis at subcritical

Sugars dehydration products

Evolution of main structural components in hydrothermally treated solids

Xylose and furfural concentration vs. % hemicellulose removal

Catalytic hydrogenation of furfural: General reaction mechanism-possible

Dominant pathways/products depend on catalyst type, reaction parameters and solvent (acting or not as H-donor for inducing transfer hydrogenation)

Y. Wang, P. Prinsen, K.S. Triantafyllidis, S.A. Karakoulia, A. Yepez, C. Len, R. Luque, ChemCatChem 2018, 10, 3459–34 Wang, Y., Prinsen, P., Triantafyllidis, K. S., Karakoulia, S. A., Trikalitis, P. N., Yepez, A., Christophe Len, Luque, R. . ACS Sustainable Chemistry & Engineering, 2018, 6(8), 9831-9844

Furfural derived chemicals and fuels

R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, M. López Granados, Energy Environ. Sci., 2016,9, 1144-1189

Catalytic hydrogenation experiments of hemicellulose stream

□ Solvent: Ethyl acetate, H₂O, EtOH & IPA (as H₂ donor - transfer

hydrogenation)

- \Box H₂ gas: 30 bar at room temp.
- □ Temperature: 180 °C
- Catalyst: Ru Pd Pt Cu Ni supported on Micro/mesoporous Activated Carbon

Catalysts for furfural hydrogenation

Catalyst	Total SSA (m²/g)	Total pore volume (cc/g)	Micropore area (m²/g) / volume (cc/g)	Meso/macro- pore & external area (m²/g) / volume (cc/g)	Crystal size (nm)
Activated carbon (AC)	1281	0.946	841/0.343	440 / 0.603	-
3%Pt/AC	1180	0.847	759 / 0.309	421 / 0.538	13.6
3%/Pd/AC	1338	0.947	886 / 0.362	452 / 0.585	16.6
5%Ni/AC	1251	0.884	831/0.343	420 / 0.541	6.8
10%Ni/AC	1246	0.895	806 / 0.329	440 / 0.566	Ni(0) 23.5- NiO 6.1
10%Cu/AC	1172	0.828	768 / 0.313	403 / 0.515	Cu(0) 23.2 - Cu ₂ O 16.6
5%Ni-15%W/AC	1025	0.720	678 / 0.276	347 / 0.444	Ni(0) 7.8 - WO ₂ 9.9 - NiWO ₄ 15.5

(a) 5%Ni/AC, (b) 3%Pt/AC, (c) 3%Pd/AC, (d) 10%Cu/AC

Effect of reaction time & temperature

	Solven	Time	т	H ₂	X				2-
Catalyst	t	(h)	(°C)	(bars)	(%)	FAL	THFAL	2-MF	MTHF
						OF OF	Н Дорон	H ₃ C	CH ₃
3%Pd/AC	EtOAc	1	180	30	15.6	10.1	Ŭ.U	43.4	Ŭ.Ŭ
3%Pd/AC	EtOAc	3	180	30	19.6	6.0	0.0	58.4	0.0
3%Pd/AC	EtOAc	6	180	30	29.3	3.6	0.0	58.6	0.0
3%Pd/AC	EtOAc	9	180	30	34.8	5.8	1.1	74.6	11.5
3%Pd/AC	EtOAc	6	180	30	19.6	6.0	0.0	58.4	0.0
3%Pd/AC	EtOAc	6	220	30	43.4	4.4	3.8	69.4	13.2

Effect of catalyst type

	Solven	Time	т	H_2	X				2-
Catalyst	t	(h)	(°C)	(bars)	(%)	FAL	THFAL	2-MF	MTHF
							Ч Домон	H ₃ C	
3%Pd/AC	EtOAc	3	180	30	19.6	6.0	Ŭ.U	58.4	0.0
3%Pt/AC	EtOAc	3	180	30	72.9	3.5	1.5	74.3	0.0
10% Ni/AC	EtOAc	3	180	30	<u>19.3</u>	21.7	1.3	75.9	0.0
10%Ni/15%W-									
AC	EtOAc	3	180	30	53.7	18.0	5.4	42.1	0.0

Pt based catalyst were very reactive and selective towards 2-MF (polar, aprotic solvent)

Ni based catalysts exhibit also high selectivity to 2-MF but activity improvement is needed

Catalytic transfer hydrogenation of furfural (solvent acting as hydrogen donor)

Ni, Cu, Pt, Pd on micro/mesoporous carbon

			Yield (%)						
Entry	Catalyst		FA	THFA	MF	MTHF	iPrOMF	Mass	
		Conversion (%)		H OH		$\langle $		balance (%)	
1		2	6	0	0	0	0	104	
2	10%Cu/AC	24	22	0	2	1	1	103	
3	3%Pd/AC	47	21	1	5	2	5	87	
4	3%Pt/AC	93	47	1	24	3	5	87	
5	5%Ni/AC	85	6	1	66	2	3	93	
6	5%Ni/AC ^b	10	10	1	1	0	0	102	
7	5%Ni/AC ^c	95	20	1	50	1	1	78	
8	5%Ni/AC ^d	87	13	1	9	2	0	38 ^e	
9	5% Ni/AC ^f	67	38	1	17	1	13	103	

^a 200 °C, 5 h, 0.35 M furfural in 60 mL isopropanol, 30 bars H_2 , ^b 0 bar $H_2/200$ °C, ^c 0 bar $H_2/260$ °C, ^d In methanol, ^eUnknown compound eluting at 3.8 min in GC analysis, not included (48 % of total peak area), ^f Spent catalyst recovered after the experiment in entry 5

An example of the successful collaboration between Greece, France and Spain, involving training/exchange of young scientists within the frame of European COST Action "LIGNOVAL"

Y. Wang, P. Prinsen, K.S. Triantafyllidis, S.A. Karakoulia, P.N. Trikalitis, A. Yepez, C. Len, R. Luque, ACS Sustainable Chem. Eng. 2018, 9831–9844

Y. Wang, P. Prinsen, K.S. Triantafyllidis, S.A. Karakoulia, A. Yepez, C. Len, R. Luque, ChemCatChem 2018, 10, 3459-3468

Catalytic hydrogenation experiments of "real"

hemicellulose stream

Enzymatic hydrolysis optimization (beech sawdust)

Chemo-catalytic processes

A synergy between thermochemical pretreatment, chemoand bio-catalysis is necessary for more efficient biomass valorization

Acknowledgements

Group

Funding:

Prof. K. Triantafyllidis Dr. Polykarpos Lazaridis Dr. Ioannis Charisteidis Dr. Christos Nitsos Dr. Apostolos Fotopoulos Dr. Antigoni Margellou Dr. Dimitrios Giliopoulos Dr. George Giannopoulos Christina Pappa, MSc

Collaborators

Prof. Paul Christakopoulos, Prof. Ulrika Rova, Dr. L. Matsakas (LTU, Sweden)

Prof. Rafael Luque (University of Cordoba)

Prof. Christophe Len (Chimie ParisTech, PSL University)

Prof. Vasile Parvulescu, Prof. Simona Coman (U. Bucharest)

Prof. Dimitrios Argyropoulos, North Carolina State University, USA

Dr. Angelos Lappas, Dr. Stylianos Stefanidis, Dr. Eleni Iliopoulou, Dr. Kostas Kalogiannis, Dr. Cryssoula Michailof, Dr. Stamatia Karakoulia (CPERI/CERTH)

Technical staff of LEFH and LIMS in CPERI/CERTH

We acknowledge support of this work by the project "INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management" (MIS 5002495) which is implemented under the Action " Reinforcement of the Research and Innovation Infrastructure", funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

* COST Association

