Effect of Cow Dung Inoculum on Biogas Generation from Anaerobic Digestion of Organic Fraction of Municipal Solid Waste - A Case Study of India

ATUL KUMAR

INDIAN INSTITUTE OF TECHNOLOGY (INDIAN SCHOOL OF MINES) DHANBAD, INDIA

7th International Conference on Sustainable Solid Waste Management, 2019

What are we going to learn today?

- Motivation for this study
- Objectives
- Materials and methods
- Key results
- Conclusions

Motivation for this study

- One-third of total world food production gets wasted every year.
- Most of the organic wastes meets with the traditional disposal techniques.
- Scarcity of suitable land for landfilling.
- Stringent regulations.
- Potent renewable energy source.
- Reduce the environmental impacts.

Fig. 1: Anaerobic digestion process

Objectives

• To identify the optimum combination of OFMSW and CM for efficient anaerobic digestion.

Materials and methods

Feedstock materials

- •Leftover food waste and other degradable wet organic waste.
- •The co-digestion substrate was cow dung (CM) collected from a farm.

Reactor Set-up

- •Aspirator glass bottles of capacity 1000 mL with bottom sampling port were used.
- •The experiments were performed in batch.

Fig. 2: Experimental set-up of the anaerobic batch reactor

Reactor Set-up (Continue..)

- The reactors were filled with four different substrate to inoculum ratio (0.5, 0.63, 0.75 and 1.0) based on VS contents.
- The inoculum and substrate were thoroughly mixed in the blender before being added to the reactor.
- All the reactors were operated at mesophilic temperature (35 ± 1 °C).
- Water displacement method was used for biogas production measurement at a fixed time every day.
- The other end of silicone tube was inserted in an inverted 50 ml graduated measuring cylinder filled with water, whereas in duplicate it was 1.5 N NaOH solution.
- The reactors were terminated at the end of 30th day.

Analytical methods

• The Characteristics of the collected samples were analysed in the laboratory.

Parameter	OFMSW	СМ
Moisture content (%)	81.2	84.4
pH	5.3	7.4
Total Solid (TS) (%)	18.8	15.6
Volatile Solid (VS) (% d.b.)	90	79.3
COD (mg/L)	79800	19600
Carbon, C (% d.b.)	45.12	37.34
Nitrogen, N (% d.b.)	1.58	3.03
C/N ratio	28.56	12.32

ations of feedstock in batch reactors

	Mixing ratio of OFMSW and CM (on	OFMSW (g VS/L)	CM (g VS/L)	Organic loading (g VS/L)
R1	VS basis)	0	10	10
R2	0.50	5	10	15
R3	0.63	6.3	10	16.3
 R4	0.75	7.5	10	17.5
R5	1.00	10	10	20

Key results

Variation of pH in the reactors

- During hydrolysis, the substrates get converted into amino acids and fatty acids which lead to accumulation of volatile fatty acids (VFA) resulting in a decrease in pH of the reactor.
- Till 12-15 days the pH in all the reactors gradually decreases.
- Due to CM as a co-substrate, the pH of the reactors again increases which creates favourable environment for the methanogenic bacteria.

Biogas generation

- The maximum biogas production was found in reactor R2.
- The percentage of methane in the generated biogas was 62%.

- The biogas production of 1594 mL at S/I ratio of 0.5, followed by 1301 mL at 0.63, 1152 mL at 10.
 0.75 and 1037 mL at 1.0.
- The biogas generation was very less from mono-digestion of CM (R1).

Conclusions

- The biogas yield in the different reactors are not very encouraging.
- The maximum biogas yield of 106.27 mL/g VS was observed in reactor R2.
- The order of biogas yield in all the reactors are R2>R3>R4>R5>R1.
- The reason for lesser biogas production in all the reactors was due to the drop in pH of the reactors at initial stage of the reaction.

Acknowledgement: I want to thank Department of Science and Technology, Govt. of India, for providing me funding opportunity for attending this conference.

Thank You & Questions?