#### Methods for Analysis of Copper from WEEE Cables When Present in High Weight Percent





**Eleanor Lewis** 

P. Douglas, R. Charles, D. Bates Moss, G. Liversage





## Overview

Introduction to the Project

Overview of the Recycling Process

Project Aim

Methods Explored

Samples

Results

Conclusions and Future Work

### Introduction to the Project

- MSc by Research student at Swansea University working in partnership with Mekatek Ltd.
- WEEE pre-processing company
- Copper scrap cables are received at ~25, 45 and 65 wt% copper
- Value of copper output fraction is critically dependent on its wt% Cu
- Key grades are 98, 99 and 99.5 wt %
- Current method: scoop sampling and XRF gun average Fig



Figure 1. Cables in their raw form (top), cables after shredder (middle), copper from cables in final form (bottom)







## Project Aim

Evaluation of methods for in-house analysis of copper from cable recycling with high accuracy and precision (i.e. to within one standard deviation of ≤0.25%)



- Analytical methods were assessed against a number of criteria, including:
  - Accuracy
  - Precision
  - Relative operator skill
  - Relative cost
  - Waste produced
  - Sample preparation
- In order to:
  - Prevent economic loss when selling fractions
  - Solve conflicts between recycler and refiner

#### Methods Explored





#### Samples

- Two ~100 g samples of the copper output fraction were obtained in granular (sample 1) and powder (sample 2) form
- •4 sub-samples created,  $\sim$ 6 g each
- Samples for bulk analysis methods were digested in 50/50 nitric acid/water
- Samples for XRF analysis were kept in original form and also ground to smaller particle size





Figure 2. Sample 1 (top) and sample 2 (bottom)



Figure 3. Samples digested in 50/50 nitric acid/water (Titration, Atomic Emissions, UV/VIS, Gravimetric)



|                                        | Assessment of the bulk analysis methods against the |                                                                                    |                |               |         |                           |                            |                        |                 |  |
|----------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------|----------------|---------------|---------|---------------------------|----------------------------|------------------------|-----------------|--|
| Method                                 | Selectivi<br>ty to<br>Copper                        | Sources of<br>Error                                                                | Presisiu<br>on | i fectura fi  | e Cost  | Relati<br>ve<br>Skill     | Sample<br>Preparati<br>on  | Volum<br>e of<br>Waste | Suitabil<br>ity |  |
| EDTA<br>Titration                      | Low                                                 | Interference<br>through<br>EDTA<br>complexatio<br>n with other<br>metals.          | Excellen<br>t  | Good          | Low     | Mediu<br>m                | Medium                     | High                   | Low             |  |
| Atomic<br>Emission<br>Spectrosco<br>py | High                                                | No obvious<br>interferences                                                        | Good           | Excellen<br>t | High    | High                      | Medium                     | Medium                 | Medium          |  |
| UV/VIS                                 | High                                                | Coloured<br>complexes<br>from other<br>metals.<br>Plastics<br>scattering<br>light. | Very<br>Good   | Excellen<br>t | Medium  | Mediu<br>m                | Medium                     | Medium                 | High            |  |
| Gravimetry                             | Medium                                              | Loss of<br>precipitate.<br>Incomplete                                              | Excellen<br>t  | Excellen<br>t | Low     | High                      | Medium                     | High                   | Medium          |  |
| Precision<br>0.5%), Go                 | and accu<br>od (> ± 0                               | <b>racy</b> i <b>keyioEx</b><br>.5%)r                                              | cellent        | ( ≤ ± 0.2     | 5%), Ve | ry goo<br>Green<br>desira | d (≤ ±<br>- more de<br>ble | esirable,              | red - le        |  |

#### Assessment of XRF analysis

| Method                 | Selectivi<br>ty to<br>Copper | Sources<br>of Error                | Precisi<br>on | Accurac<br>y  | Relati<br>ve<br>Cost | Relati<br>ve<br>Skill | Sample<br>Preparati<br>on | Volume<br>of<br>Waste | Suitabili<br>ty |
|------------------------|------------------------------|------------------------------------|---------------|---------------|----------------------|-----------------------|---------------------------|-----------------------|-----------------|
| XRF<br>(unground<br>)  | High                         | High<br>presence<br>of             | Excellen<br>t | Excellen<br>t | Mediu<br>m-High      | Mediu<br>m            | Low                       | Low                   | High            |
| XRF<br>(ground)        | High                         | organics<br>reduces<br>reliability | Excellen<br>t | Excellen<br>t | Mediu<br>m-High      | Mediu<br>m            | Low                       | Low                   | High            |
| Precision<br>0.5%), Go | and accu<br>ood (> ± 0       | Insensiti<br>racy key<br>5%)hics.  | : Excelle     | nt (≤ ± (     | 0.25%),              | Very go<br>Gree       | ood (≤ ±<br>n - more c    | lesirable,            | , red - less    |

Remove plastics via alternative method private analysis



# Effect of plastic content on the reliability of XRF analysis

Standard deviation between readings on the same sub-sample at different wt% plastic content



Wt% of plastic:Copper 20:80, 15:85, 10:90, 5:95, 2:98, 1:99, 0.5:99.5, 0:99.9



#### UV VIS vs XRF

| Method | Pros                                                                                                                                                                                    | Cons                                                                                                 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| UV/Vis | <ul> <li>Meets required precision</li> <li>Analysis of absolute<br/>copper wt% regardless of<br/>plastic content</li> <li>Tests whole sub-sample<br/>via homogenous solution</li> </ul> | <ul> <li>Cost of instrument</li> <li>More sample preparation</li> <li>More waste produced</li> </ul> |
| XRF    | <ul> <li>Meets required precision</li> <li>Already own the instrument</li> </ul>                                                                                                        | <ul> <li>Only tests a fraction of the sub-sample</li> <li>Insensitive to organics</li> </ul>         |



#### **Conclusions and Future Work**

- Have identified UV/VIS as a reliable method for accurate and precise sample analysis
- XRF displayed high enough precision but its reliability decreases significantly after 2 wt% plastic content
- Need more work on sampling procedure to make sure sampling variation is within required precision and accuracy
- Develop technique to maximise XRF suitability by sample pre-treatment to remove plastic



#### Thank you

#### **Eleanor Lewis**

#### eleanorlewis07@gmail.com

07949385804



#### **EDTA** Titration

The fire en inchicatory display feared if ferent colleurint o where invalcomplex with the metal

 $metal - indicator + EDTA \rightarrow metal - EDTA + indictor$ 

- The concentration of copper in solution can be calculated using the volume and concentration of EDTA used and the volume copper solution used
- The concentration of copper in solution can be calculated using the volume and concentration of PEP ACUSed and the volume copper solution used



$$\frac{C_1 V_1}{V_2} = C_2$$

#### Atomic Emission Spectroscopy

 The wavelength of light emitted is characteristic to each element, therefore the concentration of the element can be determined by

intensity of the emission and ch

#### Instrument: Agilent **Technologies 4200 MP-AES**





Figure 2. Illustration of the measured emission photons from atoms after entering the excited state (Source: http://light.physics.auth.gr/enc/wavelength en.html)

## UV/VIS

- · Complexation twitth TAD TAD TA eu speerfisper of to phato formed a cooper red
- The coloured complex is run against a blank and the difference in absorbance is
- The coloured complexe is our against a dilaink and the difference in absorbance is used to calculate the copper concentration in Intensity of absorption is prop. To the concentration of copper
- Beer Lambert Law Intensity of absorption is prop. To the concentration of copper
- Beer-Lambert Law

$$Abs = \varepsilon lc$$

Instrument: Unicam UV300 UV/VIS



## Gravimetry

- Copper in solution forms a solid compound with the help of a precipitating agent and precipitates out of solution as a white solid
- The weight of the precipitate is compared to the original weight of the sample and a wt% calculated
- Copper is precipitated as an insoluble complex and the precipitate is filtered and the complex is weighed



#### XRF

- Electrons are ejected due to excitation by primary x-ray
- Vacancy is filled by electron from a higher shell, emitting a secondary x-ray of characteristic energy specific to each element



Figure 3. Illustration of the electron ejection and emission of secondary x-rays (Source: http://www.nitonuk.co.uk/pdf/Niton%20XRF%20Guide.pdf)
Instrument: Niton XL2 GOLDD XRF Analyser



| Method            | Sample     | Copper<br>content<br>wt% | Standard<br>Deviation | Instrumen<br>tal<br>Standard<br>Deviation | Sample to<br>sample<br>Standard<br>Deviation |
|-------------------|------------|--------------------------|-----------------------|-------------------------------------------|----------------------------------------------|
| Titration         | 1          | 100.27                   | ±0.40                 | ±0.13                                     | ±0.44                                        |
|                   | 2          | -                        | -                     | -                                         | -                                            |
| MP-AES            | 1          | 97.66                    | ±3.80                 | ±2.17                                     | ±3.68                                        |
|                   | 2          | 98.06                    | ±2.19                 | ±1.43                                     | ±2.07                                        |
| UV/VIS            | 1          | 99.44                    | $\pm 1.60$            | ±0.46                                     | ±1.72                                        |
|                   | 2          | 99.67                    | ±1.29                 | ±0.36                                     | ±1.41                                        |
| Gravimetric       | 1.1        | 99.33                    | ±0.17                 | ±0.17                                     | -                                            |
|                   | 2          | -                        | -                     | -                                         | -                                            |
| XRF<br>(unground) | 1 (raw)    | 99.64                    | ±0.18                 | ±0.13                                     | ±0.16                                        |
|                   | 2 (raw)    | 99.76                    | ±0.07                 | ±0.09                                     | ±0.00                                        |
| XRF<br>(ground)   | 1 (ground) | 99.77                    | ±0.06                 | ±0.07                                     | ±0.00                                        |
|                   | 2 (ground) | 99.78                    | ±0.06                 | ±0.04                                     | ±0.00                                        |

#### **Results: EDTA Titration**

| Sampl<br>e | Coppe<br>r<br>conten<br>t wt% | SD    | 95% CI | 99% CI | Instru<br>menta<br>I SD | Sampl<br>e SD |
|------------|-------------------------------|-------|--------|--------|-------------------------|---------------|
| 1          | 100.27                        | ±0.40 | ±0.26  | ±0.36  | ±0.13                   | ±0.44         |
| 2          | -                             | -     | -      | -      | -                       | -             |



#### Results: Atomic Emission Spectroscopy

| Sampl<br>e | Coppe<br>r<br>conten<br>t wt% | SD    | 95% CI | 99% CI | Instru<br>menta<br>I SD | Sampl<br>e SD |
|------------|-------------------------------|-------|--------|--------|-------------------------|---------------|
| 1          | 97.66                         | ±3.80 | ±2.41  | ±3.41  | ±2.17                   | ±3.68         |
| 2          | 98.06                         | ±2.19 | ±1.39  | ±1.96  | ±1.43                   | ±2.07         |

• Instrument: Agilent Technologies 4200 MP-AES



## Results: Spectrophotometry (UV/VIS)

| Sampl<br>e | Coppe<br>r<br>conten<br>t wt% | SD    | 95% CI | 99% CI | Instru<br>menta<br>I SD | Sampl<br>e SD |
|------------|-------------------------------|-------|--------|--------|-------------------------|---------------|
| 1          | 99.44                         | ±1.60 | ±1.01  | ±1.43  | ±0.46                   | ±1.72         |
| 2          | 99.67                         | ±1.29 | ±0.78  | ±1.10  | ±0.36                   | ±1.41         |

Instrument: Unicam UV300 UV/VIS



#### Results: Gravimetric

| Sampl<br>e | Coppe<br>r<br>conten<br>t wt% | SD    | 95% CI | 99% CI | Instru<br>menta<br>I SD | Sampl<br>e SD |
|------------|-------------------------------|-------|--------|--------|-------------------------|---------------|
| 1.1        | 99.33                         | ±0.17 | ±0.42  | ±0.96  | ±0.17                   | -             |
| 2          | -                             | -     | -      | -      | -                       | -             |



#### Results: XRF

| Sampl<br>e        | Coppe<br>r<br>conten<br>t wt% | SD    | 95% CI | 99% CI | Instru<br>menta<br>I SD | Sampl<br>e SD |
|-------------------|-------------------------------|-------|--------|--------|-------------------------|---------------|
| 1 (raw)           | 99.64                         | ±0.18 | ±0.11  | ±0.16  | ±0.13                   | ±0.16         |
| 2 (raw)           | 99.76                         | ±0.07 | ±0.07  | ±0.11  | ±0.09                   | ±0.00         |
| 1<br>(groun<br>d) | 99.77                         | ±0.06 | ±0.04  | ±0.06  | ±0.07                   | ±0.00         |
| 2<br>(groun<br>d) | 99.78                         | ±0.06 | ±0.06  | ±0.09  | ±0.04                   | ±0.00         |

Instrument: Niton XL2 GOLDD XRF Analyser

