

7th International Conference on Sustainable Solid Waste Management Crete Island, Greece, 26–29 June 2019

Mechanical pretreatments of cattle manure before anaerobic digestion

<u>Helen Coarita Fernandez</u>¹, R. Teixeira Franco¹, R. Bayard¹ and P. Buffière¹

1. Laboratoire DEEP, INSA Lyon-France,- Corresponding author: helen.coarita@insa-lyon.fr

IntroductiMateriels and
methodsResultsConclusio
ns

AD is a complex decomposition process of organic substrate by anaerobic microorganisms under oxygen-free conditions

Anaerobic Digestion (AD) represents nowadays an attractive and efficient technology to convert energy from biomass feedstocks and a interesting wastes management.

> In Europe, biogas is mainly produced from anaerobic digestion using agricultural wastes, manure and energy crops. (74% in 2015)

Cattle manure is a major input to produce green energy by AD, in particular from countries in Northern and Western Europe

87Mt/an of cattle manure in France .

7th International Conference on Sustainable Solid Waste Management Crete Island,² Greece, 26-29 June 2019

Introducti
onMateriels and
methodsResultsConclusio
ns

Recalcitrant compounds, floating layers, heterogeneous feedstocks

Introducti
onMateriels and
methodsResultsConclusio
ns

Several pretreatments have been developed in order to achieve a better performance on AD.

IntroductiMateriels andonmethods

PRETREATMENTS: CHALLENGES

CHALLENGES
A higher methane yield and rate
A better organic accessibility
Avoiding inhibitors formation
Minimize energy and water demand
Economically feasible.

Three types of pretreatments can be in general distinguished: physical (mechanical), chemical and biological and often a combination among them.

PHYSICAL PRETREATMENTS

LONCIUSI

Easy to implement.

Results

- □ Reduce solid particle size
- Used to facilitate feeding operations and mixing.
- Increase solubilisation of organic substrates
- Increase biogas production rate and biogas yields.

Evaluate biochemical and physical effects of mechanical pretreatments operation particularly *comminution* on cattle manure at lab-scale before AD

Introducti on

and

Results Conclusio

1.Feedsto cks

Cattle manure of a local livestock farm (Mont du Lyonnais, Lyon-France)

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES LYON7th International Conference on Sustainable Solid Waste Management Crete Island, Greece, 26-29 June 2019

Introducti on

and

Results Conclusio

3. Experimenta I procedure

<u>BMP test</u> (Holliger et al. 2016) Mesophilic (35°C) Batch assays

Inoculum:

Anaerobic sludge from a wastewater treatment plant (Lyon, France)

7

^{1YON}7th International Conference on Sustainable Solid Waste Management Crete Island, Greece, 26-29 June 2019

1007th International Conference on Sustainable Solid Waste Management Crete Island, Greece, 26-29 June 2019

MAIN CHARACTERISTICS

Paramet er	Unit	Untreate d	Shreddin g	Mixing	Blendin g
TS	%(total weight)	15.9±0. 2	15.2±0. 1	9.1*±0 .1	9.8*±0 .4
VS	% (TS)	78.4±0. 2	77.3±0. 1	77.3± 0.6	74.0±0 .4
рН	-	8.44	8.73	8.58	8.40
BMP	mL/gV S _{RS}	210±11	216±6	222±6	235±3
WSP** BMP	% _{RS}	7.5±0.6	12,0±0. 7	14.1± 0.7	20.2±1

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES LYON7th International Conference on Sustainable Solid Waste Management Crete Island, Greece, 26-29 June 2019

and

Results

BMP TEST Untreated - Shredding - Mixage - Blending 250 200 CH4 (NmL/gVS) $k_{U} = 0 = 0 = 0 = 0, 0 = 0$ ks1 ==0201560±50n0105 WS BMP_{SP}=216±5 ml/g VS km_P == **0.255.6** m **0**/01 **∀S** BMP_{MP} = 221±6 m **I**/g VS $k_{B} = 20305653 \pm 10100 VS1$ $BMP_{BP} = 235 \pm 3 \text{ ml/gVS}$ 50 0.00 5,00 10,00 15,00 20,00 25,00 30,00 35,00 40,00 45,00 50,00 55,00 60,00 65,00 70,00

BLENDING PRETREATMENT

 ✓ Increase of 11% on methane yield

Conclusio

✓ Increase of 18% on methane rate.

Increase of water-soluble contribution to BMP from 7% to 20% with pretreatment application.

8Mp=22146

Days

¹ 1007 Th International Conference on Sustainable Solid Waste Management Crete Island, Greece, 26-29 June 2019

Introducti on Conclusio

COD and TKN Balance

Tth International Conference on Sustainable Solid Waste Management Crete Island, Greece, 26-29 June 2019

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES deep

^{LYON}7th International Conference on Sustainable Solid Waste Management Crete Island, Greece, 26-29 June 2019

Introducti on Results Conclusi ons

- The feedstock characterization proposed enabled to evaluate the mechanical pretreatments effects on cattle manure.
- Particulate fraction of TKN and COD was reduced with pretreatments.
- The water-soluble COD phase and methane production also increased.
- Blending pretreatment increased 11% on methane yield and 18% on methane rate regarding to untreated manure.

Physical properties as reduction of particle size and NSAVATER capacity retention were only improved with Shredding pretreatment Solid Waste Management Crete Island, 13

PERSPECTIVES

- Evaluation at full-scale with different mechanical devices
- □ Rheological properties
- □ Energy consumption

Thank you for your attention!

This work is fund by

INSTITUT NATIONAL

DES SCIENCES APPLIQUÉES

