

Influence on combustion and ash characteristics dur ing co-combustion of municipal solid waste and pell eted sewage sludge

Reporter : Sheng Zhang State Key Laboratory of Clean Energy Utilizati on, Zhejiang University, China Tel: +86-13165991621, E-mail: 13165991621@ 163.com

)1 Research Background

High Sludge Production High Concentration Pollutants Low Harmless treatment rate

)1 Research Background

Landfill

- Require Large area
- Hard to kill germs completely
- Fetor
- Low cost

Incineration

- High rate of volume reduction
- Harmless treatment
- Recovery energy
- High cost

Better Option

)1 Research Background

Study target

Combustion and ash characteristics during co-combustion of MSW and pelleted sludge in a grate furnace

Experiment Conditions in the Tube Furnace $\!\!\!\!*$

Parameter	Drying section	Combustion section	Burn-out section
Flow velocity (m/s)	1.15	4.48	1.22
Residence time (min)	18	25	50
Temperature Condition a(°C)	250	600	450
Temperature Consistion on the measured data of a grate for the stang 700 browince			
VariablesTemperature conditions			

- Diameter of pelleted sludge (powder, 3mm and 8mm)
- Addition of desulfurizer (CaO, mass ratio: 1%)

D2 Experiment System

Sludge powder

Sludge pellet— 3mm Sludge pellet— 8mm

D2 Experiment System

- 10g sample (drying sludge , moisture: 28%)
- Section 1, 3 and 5 are used to simulate different combustion conditions (drying, combustion and burn-out)
- Bottom ash and fly ash are collected to get the ratio.
- Concentration of flue gas pollutants is measured online.

)3 Result and discussion

- CO 、 NO_x 、 SO₂ reaches maximum at combustion section under all conditions
- Low concentration of CO and SO₂ appear at drying section under condition b.

)3 Result and discussion

SO₂ concentration at three sections with/without CaO Addition of CaO (1%) in sludge pellets can reduce the average SO_2 concentration in each

section.

 During the combustion section with the

highest SO₂

•

concentration, the maximum SO_2 removal rate can reach 80%.

03 Result and discussion

With the increase of
diameter and
compressive strength, the
ratio of slag ash and its
clinker ignition loss
increase, while the ratio
of fly ash decreases.

Under condition a, the clinker ignition loss of slag ash may reach as high as 11.9%.

Ash characteristics at different experimental conditions

- Addition of desulfurizer (CaO) in sludge pellets can reduce SO₂ emission concentration greatly.
- With the increase of diameter and compressive strength, the combustion specific surface area of sludge pellets decreases and the fly ash inside the pellets is hard to escape from it.
- Under a low combustion temperature condition (600°C), the clinker ignition loss of slag ash exceeds the limit (5%).
- Temperature on combustion section should be higher than 800°C to avoid incomplete combustion.

Future work

- 1. Effect of sludge pellet on ash fusion temperature
- 2. Co-combustion experiment of sludge and municipal solid waste.
- 3. Study on crystalline phase and elemental composition of co-combustion of sludge and municipal solid waste by XRD and XRF.

Thanks for your time