

Industrial Tests with a New Mechanical – physical RMSW Processing Plant in Búslakpuszta, József FAITLI¹, Barnabás CSŐKE², Roland ROMENDA³, Zoltán NAGY⁴, SZUDG SVEYAETH⁵

¹Associate Professor, ²Professor Emeritus, ³PhD Student, ⁴CEO, Project Leader, ⁵Executive Designer

University of Miskolc, Institute of Raw Material Preparation and Environmental Processing¹²³ 3B Hungária Kft., Hungary, Zalaegerszeg⁴⁵ Hungary, 3515 Miskolc - Egyetemváros,

ejtfaitj@uni-miskolc.hu

- The project
- Preliminaries
- The design of the RMSW (residual municipal solid wastes) mechanical – physical processing technology.
- The built processing plant in Búslakpuszta Zalaegerszeg, Hungary
- Industrial tests with the technology
- Conclusion

A consortium formed from a machine and technology producer (**3B Hungary Ltd.**), a scientific partner (the **Institute of Raw Materials Preparation and Environmental Processing, University of Miskolc**), and a public waste managing service company (**Zala-Müllex Ltd**.) has started the development and construction of an RMSW processing technology targeting no-landfilling for this waste stream.

GINOP-2.1.1-15-2016-00904 "Development of new equipment production for the low and medium capacity RMSW processing technologies"

reliminaries - Sampling

Sampling (Zalaegerszeg-Búslakpuszta 2016. October 10 – 14): MSZ 21420 28 and 29 Hungarian Standards

ATHENS201⁵ International Conference on Sustainable Solid Waste Manager Athen, 2017 June 21 - 24

eliminaries - Machine development

- **History of developments:**
- Model machines
- Model KLME separator
- 400 mm wide "pilot scale" KLME separator
- 1200 mm wide industrial size KLME separator

ATHENS201^{5th I}nternational Conference on Sustainable Solid Waste Manager Athen, 2017 June 21 - 24

minaries - Development of the KLME separator

ATHENS201⁵⁰International Conference on Sustainable Solid Waste Manager Athen, 2017 June 21 - 24

ndustrial prototype KLME in the production plant

ATHENS201⁵ International Conference on Sustainable Solid Waste Manager Athen, 2017 June 21 - 24 igned mechanical - physical RMSW processing technology

- This is the 27th RMSW processing plant in Hungary.
- The 1st almost completely Hungarian made one.
- Location: Zalaegerszeg

ne factory hall. The final shredder (METSO).

The feed and the bag opener.

26-29 June 2019

MISKOLC

UNIVERSITY OF MISKOLC

FG

YETEM

eding belt conveyor before the drum sieve.

The drum sieve and the KLME separator.

7th International Conference on Sustainable Solid Waste Management 26-29 June 2019, Heraklion, Crete

MISKOLC

Hammer mill for pre-shredding Csőke B., Rácz Á., Nagy Z., Németh Sz.**.**

The NIR (near infrared) sorters.

erials in all outputs, but clogging was found in many places. esign and modification of the KLME.

KLME separator with nailed roller schematics:

Main technological units:

- 1. Vibrated feeder
- 2. Air nozzle
- 3. Magnetic drum
- 4. Rotated auxiliary cylinder
- 5. Nailed roller

6. Eddy current separator

Numbers and short names of products:

I. Magnetic II. Inert

Main technical parameters of the 24 July, 2018 industrial test (nailed roller 2D separator): **Parameter** Value **Moving floor conveyor speed** 0.05 m/s 4.8 **Revolution number of the bag** 1/min opener rotor Tangential speed of the drum 1.13 m/s sieve perimeter KLME air nozzle air flow rate 4800 (blow in) m3/hair flow rate, sucked out from 7400 the **KLME** m3/h**Revolution number of the** 2800 eddy-current separator pole 1/min motor NIR1 and NIR2 feed belt 3 m/s conveyor speed Belt conveyor speed before the 1 m/s Inference on Sustainable Solid Waste Metso rotary-shredder Management 26-29 June 2019, Heraklion, Crete

Bio fraction

Fe product

RDF

inauguration ceremony at 13 July, 2018

urther modifications and tests

The KLME separator with Coanda roller schematics

- The municipality of Zalaegerszeg has decided to improve their MSW managing in the future, namely they would like to decrease landfilling near to 0 %.
- The first stage of this conceptual plan is almost fulfilled because a new, almost completely Hungarian made mechanical-physical RMSW processing plant was inaugurated on 13 July, 2018 at Búslakpuszta, Hungary.
- Since then, after the redesign of the KLME separator the plant is in normal operation.
- The KLME separator was equipped with a Coanda roller. The house of the KLME separator was also modified because of the experienced air beam distraction by nearby walls.

 If the blown-in air beam hits the upper part of the Coanda roller the evolving Coanda effect helps for the 2D particles separation.
The International Conference on Sustainable Solid Waste Management 26-29 June 2019, Heraklion, Crete

Thank You for Your attention!

The described work/article was carried out as part of the "Sustainable Raw Material Management Thematic Network – **RING 2017", EFOP-3.6.2-16-2017-00010 project** in the framework of the Széchenyi2020 Program. The realization of this project is supported by the European Union, co-financed by the European Social Fund.

