Two-stage high pressure anaerobic digestion for biomethane production

Dr. Wolfgang Merkle

PD Dr. Andreas Lemmer, Dr. Hans Oechsner
Introduction

By 2018, 9,000 industrial biogas plants in Germany (Biogasfachverband, 2018)

Problem: Biogas is generally used in a combined heat and power plant (CHP);
Most cogenerated heat is wasted
=> Energy utilization efficiency is decreased (Bajohr & Graf, 2013)

Electrical efficiency:
38 – 44% of energy input (ASUE, 2011)

Thermal efficiency:
38 - 46% of energy input (ASUE, 2011)
Introduction

Conventional technologies for CO$_2$-removal

- 190 biomethane plants in Germany; yearly injection capacity of 0.77 billion m3 (BNetzA, 2016)

Introduction

Concept of two-stage high pressure anaerobic digestion

Integration of gas production, purification and pressure boosting within one process

Hydrolysis → Acidogenesis → Methanogenesis

Biomass ➔ Hydrolysate ➔ CH₄-rich biogas (p>1 bar)

Digestate (solid) ➔ Digestate (liquid)

CH₂O-rich biogas (p>1 bar)

Solubility of CO₂ and H₂S

(19) Deutsches Patent- und Markenamt

(21) Aktenzeichen: 10 2011 015 415.9
(22) Anmeldetag: 29.03.2011
(34) Offenlegungsdatum: 04.10.2012
(74) Verbreiter: Müller-Böse & Partner Patentanwälte, European Patent Attorneys, 80637 Munich, DE

Prüfungsantrag gemäß § 44 PatG ist gestellt.

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Bezeichnung: Druckmethanisierung von Biomasse
Objective

Development of a two-stage high pressure anaerobic digestion plant for production of biomethane at operating pressures up to 50 bar

→ *Integration of gas production, purification and pressure boosting within one process*

1) Is it technical feasible to run a continuous methane reactor at high operating pressures?

2) Is there an influence of pressure on different process parameters?

3) What methane contents can be reached at these high pressures?
Material and Methods

Application

- **Methane reactor (MR), 21 L**
 - Operating pressure: max 100 bar
 - Gas volume: 3.83 L
 - Liquid volume: 12.8 L
 - Fixed-bed volume: 4.37 L
 - Packing: 861 m² m⁻³

- **Flash 1, 10 L**
 - Operating pressure: max 10 bar

- **Flash 2, 10 L**
 - Operating pressure: max 1 bar

Measurement:
- pH, pressure, temperature, filling level
- Gas quality, gas volume
Material and Methods

Experimental procedure

<table>
<thead>
<tr>
<th>Pressure level</th>
<th>MR</th>
<th>Flash 1</th>
<th>Flash 2</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>9,83 ± 0,06 bar</td>
<td>4 bar</td>
<td>1 bar</td>
<td>25 d</td>
</tr>
<tr>
<td>2.</td>
<td>24,66 ± 0,17 bar</td>
<td>4 bar</td>
<td>1 bar</td>
<td>16 d</td>
</tr>
<tr>
<td>3.</td>
<td>49,09 ± 0,44 bar</td>
<td>4 bar</td>
<td>1 bar</td>
<td>19 d</td>
</tr>
</tbody>
</table>

- Mixture of hydrolysate und effluent (1:1)
- Organic loading rate (g L⁻¹ d⁻¹): 4.4 ± 0.4 (10 bar), 4.3 ± 0.3 (25 bar), 4.1 ± 0.1 (50 bar)
- Hydraulic retention time (d): 4.1 ± 0.1 (10 bar), 4.2 ± 0.1 (25 bar), 4.2 ± 0.1 (50 bar)
- Temperature: 37.0 ± 0.2 °C
- Circulation: 1x total volume of methane reactor per h
Results

Liquid analysis

<table>
<thead>
<tr>
<th></th>
<th>Feed</th>
<th>Methane reactor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 bar</td>
<td>25 bar</td>
</tr>
<tr>
<td>Actetis acid (g kg⁻¹)</td>
<td>3.36</td>
<td>2.94</td>
</tr>
<tr>
<td>Propionic acid (g kg⁻¹)</td>
<td>1.53</td>
<td>1.14</td>
</tr>
<tr>
<td>iso-Butyric acid (g kg⁻¹)</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>n-Butyric acid (g kg⁻¹)</td>
<td>1.31</td>
<td>1.25</td>
</tr>
<tr>
<td>iso-Valeric acid (g kg⁻¹)</td>
<td>0.21</td>
<td>0.18</td>
</tr>
<tr>
<td>n-Valeriic acid (g kg⁻¹)</td>
<td>0.44</td>
<td>0.75</td>
</tr>
<tr>
<td>Caproic acid (g kg⁻¹)</td>
<td>0.33</td>
<td>0.47</td>
</tr>
<tr>
<td>Lactic acid (g kg⁻¹)</td>
<td>0.83</td>
<td>0.97</td>
</tr>
<tr>
<td>Ethanol (g kg⁻¹)</td>
<td>0.30</td>
<td>0.31</td>
</tr>
<tr>
<td>IC (g L⁻¹)</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>TC (g L⁻¹)</td>
<td>6.95</td>
<td>6.73</td>
</tr>
<tr>
<td>COD (g L⁻¹)</td>
<td>17.89</td>
<td>17.48</td>
</tr>
</tbody>
</table>

Complete degradation: 87.6% 87.1% 80.4%
Results

Specific methane yield of methane reactor

![Graph showing specific methane yield at different pressures](image)

Specific methane yield of MR and Flash:

- **10 bar:** $339 \text{ L kg}^{-1} \text{COD}_{\text{input}}$
- **25 bar:** $336 \text{ L kg}^{-1} \text{COD}_{\text{input}}$
- **50 bar:** $310 \text{ L kg}^{-1} \text{COD}_{\text{input}}$
Results

Gas quality

MR:
- CH$_4$ contents > 90 vol.%
- CO$_2$ contents < 8 vol.%

Flash 1:
- CH$_4$ contents > 61 vol.%
- CO$_2$ contents < 39 vol.%
Summary

- Continuous high pressure anaerobic digestion is feasible up to pressures of 50 bar.
- The specific methane yield (in methane reactor) drops by increasing the pressure due to methane slip into the flash reactors.
- Propionic acid in the hydrolysate might be a problem at higher pressures.
- Methane contents over 90 vol.-% are possible.

→ Use in transportation sector, reduced effort for grid injection.
Influence of pressures up to 50 bar on two-stage anaerobic digestion

Wolfgang Merkle a,1, Katharina Baer b, Jonas Lindner a, Simon Zielonka a, Felix Ortloff b, Frank Graf b, Thomas Kolb b, Thomas Jungbluth a, Andreas Lemmer a

a University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, Garbenstrasse 9, 70599 Stuttgart, Germany
b DVGW – Research Center at the Engler-Bunte-Institute, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131 Karlsruhe, Germany

HIGHLIGHTS

- The influence of pressure on anaerobic digestion up to 50 bar was examined experimentally.
- Increasing pressure decreases pH value in the methane reactor until 6.53.
- Increasing pressure increases methane content over 90%.
- Increasing pressure decreases specific methane yield until 0.26 L g⁻¹ COD added.
- The pressurized methane reactor operates very stable.

ARTICLE INFO

Article history:
Received 24 November 2016
Received in revised form 30 January 2017
Accepted 3 February 2017
Available online 8 February 2017

Keywords:
Anaerobic digestion
High pressure
Two-stage
Biogas
Biomethane

ABSTRACT

The concept of pressurized two-stage anaerobic digestion integrates biogas production, purification and pressure boosting within one process. The produced methane-rich biogas can be fed into gas grids with considerably less purification effort. To investigate biogas production under high pressures up to 50 bar, a lab scale two-stage anaerobic digestion system was constructed including one continuously operated pressurized methane reactor. This investigation examined the effects of different operating pressures in methane reactor (10, 25, 50 bar) on biogas quantity and quality, pH value and process stability. By increasing operating pressures in methane reactor, the pH value decreased from 6.65 at 10 bar to 6.55 at 50 bar. Simultaneously, methane content increased from 79.08% at 10 bar to 90.45% at 50 bar. The results show that methane reactors can be operated up to 50 bar pressure continuously representing a viable alternative to commonly used gas upgrading methods because of reduced purification effort.

© 2017 Elsevier Ltd. All rights reserved.
THE END

Thank you for your attention

Dr. Wolfgang Merkle

University of Hohenheim – State Institute of Agricultural Engineering and Bioenergy 740
Garbenstr. 9 | 70599 Stuttgart
Phone: +49 711 459 23757
E-Mail: wolfgang.merkle@uni-hohenheim.de
Appendix

Hydrolysate production

Leachbed reactors: 2 weekly rhythm
Maize- / Gras silage: 1:1 ODM basis
Mixture and storage
Thermophilic operation

Liquid analysis

Chemical Oxygen Demand: COD
Carbon total: TC
inorganic: IC
Fatty acids (GC)
Sugars & Alcohols (HPLC)

(Steinbrenner, 2018)
Appendix

pH-value

- pH-value declines by increasing the pressure
- Higher pH-values than at Chen et al. (2014)