

Impact of Management Alternatives on GHG Emissions from the Waste Sector

Amani Maalouf, Mutasem El-Fadel

HERAKLION 2019

The 7th International Conference On Sustainable Solid Waste Management

Crete Island, Greece

26-29 June 2019

Department of Civil and Environmental

Engineering Maroun Semaan Faculty of Engineering and

Waste Managemen

Methodology

Results &

Conclusions

Concerns about the anthropogenic contribution to **global warming**

Solid waste management carbon footprint

Dependent on:

- Waste treatment method or process
- Type of waste, its physical composition
- Emission accounting method

AUB/

Global Warming Impact

(World Bank, 2018)

AUB *

Methodology

Results &

Conclusions

Life Cycle Assessment

Methodology

Results & Discussi

Conclusions

Many studies have estimated GHG emissions from various waste management processes in the context of **developed economies** whether by applying the life cycle assessment (LCA) modeling or the 2006 IPCC Guidelines at a regional scale

Need for more efforts aiming at quantifying and assessing emissions from the waste sector in **developing** economies

AUB *

1- Study

area

definitio

Methodology

Results &

The GHG inventory of the integrated waste management system following a life cycle approach : A case study for a developing economy

- Objective: Identify economically viable waste management alternatives with minimal environmental externalities including best strategies for GHG emission reduction
 - **Ultimate objective**: Assess emissions reporting targets under the UNFCCC commitments or guide decision making and reduction targets using carbon credit to meet NDCs under the

BEIRUT & SURROUNDING

ingen en andere en a

World Bank: upper-middle-income economies

- ~ 1,986 Km²
- ~ 297 municipalities
- ~ 2 Million inhabitants
- 2,800-3,000 Tons of MSW per day

Naame

Waste Composition

BEIRUT & SURROUNDING

AUB

- MSW data collected from year 1994 to 2013 in **Beirut & surroundings**
- **2013** selected as the inventory year

Study Area

8

AUB *

Methodology

Results &

The current MSW management scenario

BEIRUT & SURROUNDING

AUB

Conclusions

Alternative scenarios tested for policy and economic analysis

AUB 4

Simulation Model

Estimates

- Direct and indirect GHG emissions from various processes
- Economic and environmental externalities, as well as energy produced or consumed across various stages
- Potential carbon credit

(Maalouf and El-Fadel,

11

AUB 4

Emissions Under Baseline Conditions

Category	Collecti	Recycli	Composti	Incineratio	Landfillin	
	on	ng	ng	n	g	
Waste (M Tons)	1.069	0.071	0.111	0	0.887	
Overall Direct	0.019		0.100	0	1.383	
emissions						
Waste	-		0.090	0	1.326	
degradation						
Fuel	0.019		0.010	0	0.057	
consumption						
Overall Indirect	0.003		0.023	0	-0.188	
emissions						
Upstream emissions	0.003		0.023	0	0.014	
Electricity	-		0.022	0	0.006	
consumption						
Fuel provision	0.003		0.001	0	0.008	
Downstream	-		0	0	-0.202	
emissions						
Electricity	-	-	-	0	0	
production						Collection
Carbon storage	-	-	0	-	-0.202	Composition
Total GWF S0	0.022	-2.655	0.123	0	1.196	comosting
	Category Waste (M Tons) Overall Direct emissions Waste degradation Fuel consumption Overall Indirect emissions Upstream emissions Electricity consumption Fuel provision Downstream emissions Electricity production Carbon storage Total GWF S0	CategoryCollectiWaste (M Tons)1.069Overall Direct0.019emissions-Waste-degradation-Fuel0.019consumption0.003Overall Indirect0.003emissions-Upstream emissions0.003Electricity-consumption0.003Electricity-consumption0.003Downstream-emissions-Electricity-production-Carbon storage-Total GWF S00.022	CategoryCollecti onRecycliWaste (M Tons)1.0690.071Overall Direct0.019	CategoryCollecti onRecycli ngCompostiWaste (M Tons)1.0690.0710.111Overall Direct0.0190.0010.100emissions-0.0900.090degradation-0.090Fuel0.0190.010consumption0.0030.023emissions0.0030.023Upstream emissions0.0030.001Downstream-0Fuel provision0.0030.001Downstream-0Electricity productionElectricity productionCarbon storage-0Total GWF S00.022-2.6550.123	CategoryCollecti onRecycli ngComposti IncineratioWaste (M Tons)1.0690.0710.1110Overall Direct0.0190.10000emissions-0.09000Waste degradation-0.09000Fuel consumption0.0190.01000Overall Indirect emissions0.0030.02300Upstream emissions emissions0.0030.02300Electricity consumption-000Fuel provision0.0030.00100Downstream emissions-000Electricity production00Carbon storage0-Total GWF S00.022-2.6550.1230	CategoryCollecti onRecycli ngComposti ngIncineratio nLandfillinWaste (M Tons)1.0690.0710.11100.887Overall Direct emissions0.0190.10001.383Waste degradation-0.09001.326Fuel consumption0.0190.01000.057Overall Indirect emissions0.0030.0230-0.188Upstream emissions0.0030.02300.014Electricity consumption-0.00100.008Fuel provision0.0030.00100.008Dystream emissions0.0030.00100.008Electricity consumption-00-0.202Fuel provision0.003-00Pownstream emissions-00-0.202Electricity consumption00Fuel provision0.0030Downstream

Direct emissions constitute the largest contributor (96%) to total emissions

Indirect emissions were less significant (accounted for 4% of total emissions)

12

Temporal variation of GHG emissions under baseline scenario from 1994 to 2013

Results &

Discussion

Methodology

AUB

Introduction

- Prior to 1997, a small fraction (~4%) of MSW was recovered for recycling and the majority of the waste (~96%) was disposed of at uncontrolled dumpsites
- In 1997-2015, a new integrated plan was adopted whereby the waste was diverted from dumpsites into a managed landfill
- Emissions remained stable between 2002 and 2005 with improved performance on composting and recycling at 8% with a drop in 2006-2007

Conclusions

AUB *

Methodology

Conclusions

- Scenarios with landfilling (S0 to S12) resulted in greater emissions in comparison with scenarios involving incineration (S11 to S15)
- Maximizing waste recycling and composting coupled with energy recovery from landfilling (S7) minimizes the overall emissions by 88% with respect to S0
- Incineration (S14) coupled with maximum recycling and composting, minimizes the overall emissions by 96% with respect to S0; with additional 32% emissions reduction from energy recovery (S15)

Scenario Analysis: Economic Implications

1- Baseline conditio

AUB

Scopario	Description	Avoided	Cost variation
Scenario	Description	(%)	(70)
S 0	Existing baseline scenario	0	0
S1	S0 + LFG energy recovery	-3	-7
S2	Upgrade LFG capture system	-55	-7
S 3	S2 + LFG energy recovery	-65	-19
S4	Max recycling & composting + landfilling	-31	-7
S5	S4 + LFG energy recovery	-34	-15
<u> </u>	S4 + Upgrade LEG capture system	79	16
S7	<u>S6+</u> F <u>G_energy_recovery</u>	88	26
S8	Landfilling all waste	39	16
S9	S8 + LFG energy recovery	36	4
S10	Substitute composting in S0 by anaerobic digestion + energy	-3	10
	recovery		
S11	Substitute landfilling in S0 by incineration	-73	63
S12	Incinerate all waste	-45	89
<u> </u>	- 512 + energy recovery — — — — — — — — — — — — — — — — — — —	· — — —- 90 — — —	- — — — - 3 9— — — —
	-Max-recycling and composting + incineration	— — — -9 6— — —	— — — —4 3 — — — -
S15	S14 + energy recovery	-128	7

- Maximizing waste recycling and composting coupled with upgrading LFG collection for energy recovery from landfilling decreases the overall cost of MSW management most (-26% with carbon credit)
- Optimizing emissions reduction through incineration (S14) reduces emissions most (-96%) at the expense of an overall net cost increase by ~43% if carbon credit is considered

Major Conclusions

- Calculation of the GHG inventory in time series for the IWMS of the Greater Beirut area highlights the ability of this tool to inspire appropriate environmental policies aimed at reducing the climate change impacts of the waste sector
- The lower quantity of wastes treated in landfills and the greater quantity of LFG captured determined a reduction in total GHG emissions of the IWMS
- Optimizing composting and recycling coupled with upgrading LFG collected for energy recovery from landfilling reduced equivalent emissions by 88% at a corresponding savings 26% with carbon credit
- Optimizing composting and recycling coupled with incineration reduced equivalent emissions the most (96% savings) at a corresponding increased cost of 43 with carbon credit
- The results provide guidelines for policy and decision makers on the economic viability of investment in carbon credit to meet NDCs under the Paris Agreement

THANK YOU !!

Amani Maalouf, PhD

Postdoctoral Researcher Environmental and Water Resources Engineering American University of Beirut

Email: ahm22@mail.aub.edu