Influence of pyrolysis conditions on the properties of bio-chars produced from aquatic biomass – alga and hornwort

Jakub MOKRZYCKI, Piotr RUTKOWSKI

jakub.mokrzycki@pwr.edu.pl, piotr.rutkowski@pwr.edu.pl
Department of Polymer and Carbonaceous Materials, Faculty of Chemistry
Wrocław, POLAND
Hornwort and alga

Hornwort (*Ceratophyllum demersum*)
- fast growing freshwater aquatic biomass
- high ability for nutrient accumulation
- eutrophication of waters

Alga (*Cladophora glomerata*)
- fast growing abilities
- eutrophication of waters
Thermochemical conversion

PROCESS PARAMETERS

• inert atmosphere (20 dm³/h N₂ flow)
• heating rate 10°C/min, residence time 1 hour
• pyrolysis (500-800°C)
Hornwort and alga – chemical composition characterization

- high amounts of ash (~20%) in both hornwort and alga
- significant difference in cellulose and hemicellulose contents
- over 3 fold higher amount of lignin in alga in comparison to hornwort
- higher extractives amount (20%) in hornwort than in alga (13%)

Hornwort and alga – chemical composition characterization

Solid yield after pyrolysis

<table>
<thead>
<tr>
<th>Temperature, °C</th>
<th>Bio-char yield, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>73</td>
</tr>
<tr>
<td>300</td>
<td>75</td>
</tr>
<tr>
<td>400</td>
<td>63</td>
</tr>
<tr>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>600</td>
<td>45</td>
</tr>
<tr>
<td>800</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature, °C</th>
<th>Solid yield after pyrolysis, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>600</td>
<td>0</td>
</tr>
<tr>
<td>800</td>
<td>0</td>
</tr>
</tbody>
</table>

Mercury porosimetry

<table>
<thead>
<tr>
<th>Temperature, °C</th>
<th>Total pore area, m²/g</th>
<th>Intrusion (H)</th>
<th>Intrusion (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>18.1</td>
<td>22.0</td>
<td>10.2</td>
</tr>
<tr>
<td>300</td>
<td>19.8</td>
<td>19.8</td>
<td>12.9</td>
</tr>
<tr>
<td>400</td>
<td>20.6</td>
<td>20.6</td>
<td>12.0</td>
</tr>
<tr>
<td>500</td>
<td>19.4</td>
<td>19.4</td>
<td>16.0</td>
</tr>
<tr>
<td>600</td>
<td>20.1</td>
<td>20.1</td>
<td>7.9</td>
</tr>
<tr>
<td>800</td>
<td>7.9</td>
<td>7.9</td>
<td>4.4</td>
</tr>
</tbody>
</table>
Hornwort and alga characteristics

Proximate analysis

- Ash (dry basis), % vs. Temperature, °C

- pHpzc

- SEM of 800°C bio-chars
Hornwort and alga characteristics

FTIR

Ultimate analysis

<table>
<thead>
<tr>
<th>Sample</th>
<th>C_{daf}</th>
<th>H_{daf}</th>
<th>O_{diff}</th>
<th>N_{daf}</th>
<th>S_{d}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Hornwort</td>
<td>45.5</td>
<td>6.1</td>
<td>42.5</td>
<td>5.3</td>
<td>0.64</td>
</tr>
<tr>
<td>H500</td>
<td>59.0</td>
<td>3.1</td>
<td>31.3</td>
<td>6.0</td>
<td>0.37</td>
</tr>
<tr>
<td>H600</td>
<td>60.9</td>
<td>2.3</td>
<td>30.9</td>
<td>5.2</td>
<td>0.42</td>
</tr>
<tr>
<td>H800</td>
<td>64.0</td>
<td>1.6</td>
<td>29.7</td>
<td>3.9</td>
<td>0.40</td>
</tr>
<tr>
<td>Alga</td>
<td>38.8</td>
<td>5.9</td>
<td>49.3</td>
<td>4.0</td>
<td>1.62</td>
</tr>
<tr>
<td>A500</td>
<td>55.2</td>
<td>2.8</td>
<td>31.9</td>
<td>5.0</td>
<td>2.97</td>
</tr>
<tr>
<td>A600</td>
<td>60.8</td>
<td>2.2</td>
<td>26.5</td>
<td>4.8</td>
<td>3.08</td>
</tr>
<tr>
<td>A800</td>
<td>73.3</td>
<td>2.2</td>
<td>12.2</td>
<td>4.2</td>
<td>3.49</td>
</tr>
</tbody>
</table>

d_{daf} - dry ash-free basis, O_{diff} – calculated by difference, d – dry basis

Van Krevelen diagram

- Hornwort
- Alga
- Lignin
- Cellulose
- Char
- Temperature

Wrocław University of Science and Technology
Single point adsorption of dyes

Phenol
- Initial concentration: 100 mg/dm³
- Initial solution pH value: 7.73
- Mass of bio-char: 0.1 g
- Solution volume: 100 cm³
- Sorption time: 24 h

Methylene blue
- Initial concentration: 50 mg/dm³
- Initial solution pH value: 7.77
- Mass of bio-char: 0.1 g
- Solution volume: 100 cm³
- Sorption time: 24 h
„Single point” adsorption of herbicides

Atrazine

Initial concentration: 10 mg/dm3
Initial solution pH value: 7.70
Mass of bio-char: 0.1 g
Solution volume: 100 cm3
Sorption time: 24 h

Isoproturon

Initial concentration: 10 mg/dm3
Initial solution pH value: 7.68
Mass of bio-char: 0.1 g
Solution volume: 100 cm3
Sorption time: 24 h
"Single point" adsorption of heavy metal

- **Initial concentration:** 300 mg/dm³
- **Initial solution pH value:** 4.61
- **Mass of bio-char:** 0.1 g
- **Solution volume:** 100 cm³
- **Sorption time:** 24 h

Diagram: Graph showing the percentage removed of Cr³⁺ with different temperatures and organisms (Hornwort, Alga).

Chemical Reaction:

- **Cr³⁺**
- **EDTA** 0.095g

Chemical Structure:

- **Hornwort**
- **Alga**

Temperature:

- 0°C
- 80°C

Solution pH:

- 4.0
- 5.0
- 6.0
- 7.0

Temperature, °C

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7

% removed

- 0
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
- 100

Solution pH

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7

Temperature, °C

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7

% removed

- 6.9
- 26.2
- 21.5
- 28.8

Solution pH

- 6.9
- 6.0
- 4.9

Temperature, °C

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7

% removed

- 6.9
- 26.2
- 21.5
- 28.8

Solution pH

- 6.9
- 6.0
- 4.9
Conclusions

• high amounts of ash in bio-chars derived from aquatic biomass (up to 57%), is a result of presence of silica (from diatoms) and alkali metals oxides

• alkali metals oxides presence results in high pHpzc values of obtained bio-chars (up to 13)

• bio-chars were examined in „single point” adsorption of dyes: i) phenol and methylene blue, ii) herbicides: atrazine, isoproturon, iii) heavy metal: Cr$^{3+}$

• significant coefficient between the pHpzc value and sorption capacity was observed
Thank you for your attention!