

STABILIZING FOOD WASTE ANAEROBIC DIGESTION

G. Capson-Tojo, M. Rouez, M. Crest, J.-P. Steyer, N. Bernet, J.-P. Delgenès, **R. Escudié**

Lab. for Environmental Biotechnology
Narbonne – France

CIRSEE
Paris – France

What is Food Waste?

- "Mass of food lost or wasted in the part of food supply chains leading to edible products for human consumption"
- **1/3** of the food produced worldwide
- Main contributor of OFMSW

What is Food Waste?

- "Mass of food lost or wasted in the part of food supply chains leading to edible products for human consumption"
- **1/3** of the food produced worldwide
- Main contributor of OFMSW

Landfillin g

Incineratio n

Compostin g

Anaerobic digestion (AD)

What is Food Waste?

- "Mass of food lost or wasted in the part of food supply chains leading to edible products for human consumption"
- **1/3** of the food produced worldwide
- Main contributor of OFMSW

EU directive (2008/98/CE) Valorization through soil return mandatory

Compostin g

Anaerobic digestion (AD)

FW characteristics and

AD

Common FW characteristics

Countr	TS (% w/w)	VS (% TS)	Carbohydrat es (%)	Protein s (%)	Lipid s (%)	C/N
	23.7	91.4	41.4	15.1	23.5	13.9
	27.5	86.6	~ 56.4	16.1	17.5	18.3
	21.0	90.3	61.8	19.8	12.1	16.1

- Several studies with FW as substrate for methane and/or hydrogen production
- Biochemical methane potentials (BMPs): 300-600 ml
 CH₄⋅g VS⁻¹

FW characteristics and AD

Common FW characteristics

Countr	TS (% w/w)	VS (%	Carbohydrat es (%)	Protein (%)	Lipid s (%)	C/N
	25.7	AP.4	41.4	130	23.5	13.9
	27.5B	36.6	~ 56.4	16.1	17	18.3
	21.0	90.3	61.8	19.8	12.1	16.1

- Several studies with FW as substrate for methane and/or hydrogen production
- Biochemical methane potentials (BMPs): 300-600 ml
 CH₄⋅g VS⁻¹

Challenges in FW AD

Fast degradation

Main challenge in batch reactors: initial accumulation of VFAs and acidification
Organic matter

High protein

Main challenge in longterm operation: accumulation of NH₃ and inhibition Organic nitrogen

Inhibition methanogenic archaea

VFA accumulation

pH drop

Mono-digestion

- Unstable operation ("inhibited steady state")
- Failure even at low OLRs

Addition of water as industrial solution: environmental and economical constraints

Supplementation of trace elements (TEs)

Required for the synthesis of enzymes

- Improved methane production rates and VFA degradation kinetics
- Higher OLRs achieved

TEs in Commercial FW used

Compound	Concentration (mg·kg TS ⁻¹)
Fe	1,114
Со	non-detected
Cu	11.2
Mn	27.6
Мо	1.26
Zn	38.4
Ni	1.19
Se	?

Lack of TEs?

Objectives: comparison stabilization options

Avoid initial VFA peak: compare 3 strategies for

stabilizing FW AD Working at low temperatures (30 °C) $NH_3 +$ H+

Co-digestion with paper buffering capacity, slower biodegradation

VS.

Consecutive batch reactor at increasing substrate loads

process applicable at industrial scale

simulation a plug-flow reactor with digestate recirculation

Material and Methods

Research strategy

- Four mixed pilot reactors
- Working volumes 7.5-20 l
- Mesophilic operation (37 °C)
- Commercial FW from GN

fast food restaurant

restaurant

supermarket fruit & vegatable supermarket

distributor

Material and Methods

Research strategy

- Four mixed pilot reactors
- 🍔 Working volumes 7.5-20 l
- Mesophilic operation (37 °C)
- Commercial FW from GN

Specific conditions

- Control: fed with FW
- **T30:** temperature of 30 °C
- Co-PW: fed with FW and PW (3:1 w/w)
- Sup-TEs: doped with TE

Compound	Concentration reactor (mg·l ⁻¹)
Fe	100
Co	1.0
Cu	0.1
Mn	1.0
Мо	5.0
Zn	0.2
Ni	5.0
Se	0.2

Material and Methods

Research strategy

- Four mixed pilot reactors
- 🌻 Working volumes 7.5-20 l
- Mesophilic operation (37 °C)
- Commercial FW from GN

Specific conditions

- Control: fed with FW
- **T30:** temperature of 30 °C
- Co-PW: fed with FW and PW (3:1 w/w)
- Sup-TEs: doped with TEs

<u>Feeding strategy</u>

- 1st load: 0.087 kg FW·kg_{inoculum}-1 (S/X 0.25 g VS·g VS-1)
- 2nd load: 0.173 kg FW·kg_{inoculum}-1
- 3rd load: 0.260 kg FW·kg_{inoculum}-1
- **Twice each load**
- Reactors fed if biogas plateau or 500 ml CH₄·g VS⁻¹ reached

- Continuous accumulation of propionic acid
- Gradual decrease of methane production rate & longer lag phase

- Continuous accumulation of propionic acid
- Gradual decrease of methane production rate & longer lag phase

- T30: slower kinetics and longer lag phase
- built-up of propionic acid

Time (d)

Gradual decrease of methane production rate & longer lag phase

- Co-PW: lower yields
- Higher accumulation of propionic acid (over 20 g·l-1)

Methane Yield

 $(NH_3 + NH_4^+)$

Control VS. Sup-TEs

0.260

- Continuous accumulation of propionic acid
- Gradual decrease of methane production rate & longer lag phase
- Sup-TEs: faster kinetics but still propionic acid
- Inhibition at 0.260 kg FW·kg_{inoculum}-1

 $(NH_3 + NH_4^+)$

b

- Propionic acid accumulation => key issue for FW AD
- Acidification at high loads
- Low temperature and co-digestion with PW: discarded
- ✓ TEs addition: improved kinetics and higher substrate loads (but still propionic acid accumulation)

Operational implications

- Batch mode might not be the best option
- Methane production cannot be used as sole criteria for reactor feeding

Research challenges

Favor consumption of: propionic acid and/or HAc and/or H₂

Thank you for your kind attention

- Similar methane yields and COD conversions
- Lag phases in methane production+ GAC
- Shorter lags
- Stability up!
- Improvement due to favored HAc consumption
- Propionic acid consumption not improved...

