STABILIZING FOOD WASTE
ANAEROBIC DIGESTION

G. Capson-Tojo, M. Rouez, M. Crest,
J.-P. Steyer, N. Bernet, J.-P. Delgenès, R. Escudié

Lab. for Environmental Biotechnology
Narbonne – France

CIRSEE
Paris – France
What is Food Waste?

“Mass of food lost or wasted in the part of food supply chains leading to edible products for human consumption”

1/3 of the food produced worldwide

Main contributor of OFMSW

FAO (2012), Gustavsson et al. (2011), Melikoglu et al. (2013), UN (2011)
What is Food Waste?

- “Mass of food lost or wasted in the part of food supply chains leading to edible products for human consumption”
- 1/3 of the food produced worldwide
- Main contributor of OFMSW

FAO (2012), Gustavsson et al. (2011), Melikoglu et al. (2013), UN (2011)
What is Food Waste?

• “Mass of food lost or wasted in the part of food supply chains leading to edible products for human consumption”

• 1/3 of the food produced worldwide

• Main contributor of OFMSW

EU directive (2008/98/CE)
Valorization through soil return mandatory

Composting

Anaerobic digestion (AD)

FAO (2012), Gustavsson et al. (2011), Melikoglu et al. (2013), UN (2011)
Several studies with FW as substrate for methane and/or hydrogen production

Biochemical methane potentials (BMPs): 300-600 ml CH$_4$·g VS$^{-1}$

<table>
<thead>
<tr>
<th>Country</th>
<th>TS (% w/w)</th>
<th>VS (% TS)</th>
<th>Carbohydrates (%)</th>
<th>Protein (%)</th>
<th>Lipids (%)</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>23.7</td>
<td>91.4</td>
<td>41.4</td>
<td>15.1</td>
<td>23.5</td>
<td>13.9</td>
</tr>
<tr>
<td>Italy</td>
<td>27.5</td>
<td>86.6</td>
<td>~56.4</td>
<td>16.1</td>
<td>17.5</td>
<td>18.3</td>
</tr>
<tr>
<td>France</td>
<td>21.0</td>
<td>90.3</td>
<td>61.8</td>
<td>19.8</td>
<td>12.1</td>
<td>16.1</td>
</tr>
</tbody>
</table>
FW characteristics and AD

Common FW characteristics

<table>
<thead>
<tr>
<th>Country</th>
<th>TS (% w/w)</th>
<th>VS (% TS)</th>
<th>Carbohydrates (%)</th>
<th>Protein (%)</th>
<th>Lipids (%)</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>🇬🇧</td>
<td>23.7</td>
<td>31.4</td>
<td>41.4</td>
<td>15.1</td>
<td>23.5</td>
<td>13.9</td>
</tr>
<tr>
<td>🇮🇹</td>
<td>27.5</td>
<td>36.6</td>
<td>~56.4</td>
<td>16.1</td>
<td>17.5</td>
<td>18.3</td>
</tr>
<tr>
<td>🇫🇷</td>
<td>21.0</td>
<td>90.3</td>
<td>61.8</td>
<td>19.8</td>
<td>12.1</td>
<td>16.1</td>
</tr>
</tbody>
</table>

- Several studies with FW as substrate for methane and/or hydrogen production
- Biochemical methane potentials (BMPs): 300-600 ml CH₄·g VS⁻¹
Challenges in FW AD

Fast degradation
Main challenge in **batch** reactors: initial accumulation of VFAs and **acidification**

- Organic matter
- VFAs
- Inhibition methanogenic **archaea**
- VFA accumulation
- pH drop

High protein content
Main challenge in **long-term** operation: accumulation of NH₃ and **inhibition**

- Organic nitrogen
- NH₃
Stabilizing FW AD

Mono-digestion

- Unstable operation ("inhibited steady state")
- Failure even at low OLRs

- Addition of water as industrial solution: environmental and economical constraints

- Supplementation of trace elements (TEs)

Banks et al. (2012), Capson-Tojo et al. (2016), Nagao et al. (2012), Qiang et al. (2012)
Required for the synthesis of enzymes

Improved methane production rates and VFA degradation kinetics

Higher OLRs achieved

TEs in Commercial FW used

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration (mg·kg TS⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>1,114</td>
</tr>
<tr>
<td>Co</td>
<td>non-detected</td>
</tr>
<tr>
<td>Cu</td>
<td>11.2</td>
</tr>
<tr>
<td>Mn</td>
<td>27.6</td>
</tr>
<tr>
<td>Mo</td>
<td>1.26</td>
</tr>
<tr>
<td>Zn</td>
<td>38.4</td>
</tr>
<tr>
<td>Ni</td>
<td>1.19</td>
</tr>
<tr>
<td>Se</td>
<td>?</td>
</tr>
</tbody>
</table>

Lack of TEs?

Objectives: comparison stabilization options

Avoid initial VFA peak: compare 3 strategies for stabilizing FW AD

Working at low temperatures (30 °C)

NH₃ + H⁺ ↔ NH₄⁺

Co-digestion with paper waste (PW)
- C/N, inhibitors dilution, buffering capacity, slower biodegradation

VS.

Addition of trace elements (TEs)
- Enzyme synthesis

VS.

Consecutive batch reactor at increasing substrate loads
- Process applicable at industrial scale
- Simulation a plug-flow reactor with digestate recirculation
Material and Methods

Research strategy

- Four mixed pilot reactors
- Working volumes 7.5-20 l
- Mesophilic operation (37 °C)
- Commercial FW from GN

fast food
restaurant
supermarket fruit & vegetable
supermarket
fruit & vegetable
distributor
Material and Methods

Research strategy
- Four mixed pilot reactors
- Working volumes 7.5-20 l
- Mesophilic operation (37 °C)
- Commercial FW from GN

Specific conditions
- Control: fed with FW
- T30: temperature of 30 °C
- Co-PW: fed with FW and PW (3:1 w/w)
- Sup-TEs: doped with TE

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration reactor (mg·l⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>100</td>
</tr>
<tr>
<td>Co</td>
<td>1.0</td>
</tr>
<tr>
<td>Cu</td>
<td>0.1</td>
</tr>
<tr>
<td>Mn</td>
<td>1.0</td>
</tr>
<tr>
<td>Mo</td>
<td>5.0</td>
</tr>
<tr>
<td>Zn</td>
<td>0.2</td>
</tr>
<tr>
<td>Ni</td>
<td>5.0</td>
</tr>
<tr>
<td>Se</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Material and Methods

Research strategy
- Four mixed pilot reactors
- Working volumes 7.5-20 l
- Mesophilic operation (37 °C)
- Commercial FW from GN

Specific conditions
- **Control**: fed with FW
- **T30**: temperature of 30 °C
- **Co-PW**: fed with FW and PW (3:1 w/w)
- **Sup-TEs**: doped with TEs

Feeding strategy
- **1st load**: 0.087 kg FW·kg\textsubscript{inoculum}-1 (S/X 0.25 g VS·g VS-1)
- **2nd load**: 0.173 kg FW·kg\textsubscript{inoculum}-1
- **3rd load**: 0.260 kg FW·kg\textsubscript{inoculum}-1
- Twice each load
- Reactors fed if **biogas plateau** or **500 ml CH\textsubscript{4}·g VS-1** reached
Control

Continuous accumulation of propionic acid

Gradual decrease of methane production rate & longer lag phase

Methane Yield

Propionate

TAN (NH₃ + NH₄⁺)
Control VS. T30

Continuous accumulation of propionic acid
Gradual decrease of methane production rate & longer lag phase

T30: slower kinetics and longer lag phase
Built-up of propionic acid
Control VS. Co-PW

<table>
<thead>
<tr>
<th></th>
<th>Time (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>0.173</td>
</tr>
<tr>
<td>Methane Yield</td>
<td>0.173</td>
</tr>
</tbody>
</table>

Co-PW

<table>
<thead>
<tr>
<th></th>
<th>Time (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-PW</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>0.173</td>
</tr>
<tr>
<td>Methane Yield</td>
<td>0.173</td>
</tr>
</tbody>
</table>

- **Continuous accumulation of propionic acid**
- **Gradual decrease of methane production rate & longer lag phase**
- **Co-PW: lower yields**
- **Higher accumulation of propionic acid (over 20 g·l⁻¹)**

\[(\text{NH}_3 + \text{NH}_4^+)\]
Methane Yield

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Sup-TEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane yield</td>
<td>0.087</td>
<td>0.173</td>
</tr>
<tr>
<td>Propionic acid</td>
<td>0.173</td>
<td>0.173</td>
</tr>
<tr>
<td>TAN</td>
<td>0.173</td>
<td>0.260</td>
</tr>
</tbody>
</table>

- **Continuous accumulation of propionic acid**
- **Gradual decrease of methane production rate & longer lag phase**
- **Sup-TEs**: faster kinetics but still propionic acid
- **Inhibition at 0.260 kg FW·kg_{inoculum}⁻¹**

\[(\text{NH}_3 + \text{NH}_4^+)\]

INRA

SUEZ
Conclusions

- **Propionic acid** accumulation => key issue for FW AD
- Acidification at high loads
- Low temperature and co-digestion with PW: discarded
- **TEs** addition: improved kinetics and higher substrate loads (but still propionic acid accumulation)

Operational implications

- Batch mode might not be the best option
- **Methane production** cannot be used as sole criteria for reactor feeding

Research challenges

- Favor consumption of: propionic acid and/or HAc and/or H₂
Thank you for your kind attention
1st batch: GAC and TEs

- Similar methane yields and COD conversions
- Lag phases in methane production + GAC
- Shorter lags
- Stability up!
- Improvement due to favored HAc consumption
- Propionic acid consumption not improved...