Bio-Hydrogen Production via Reforming of Anaerobic Digestion Biogas

Isam Janajreh¹, Khadije Elkadi¹, Olawale Makanjuola¹, Sherien Elagroudy²

¹Khalifa University of Science and Technology, Mechanical Engineering

Department, Abu Dhabi, UAE

²AinShams Universit

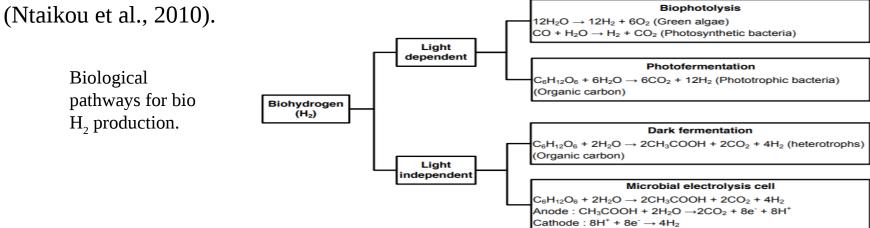
anagement Center of Excellence, Cairo,

P O Box 127788, Abu Dhabi, UAE **T** +971 2 810 9130 **F** +971 2 810 9109 isamjanajreh@ku.ac.ae

ku.ac.ae

Outline

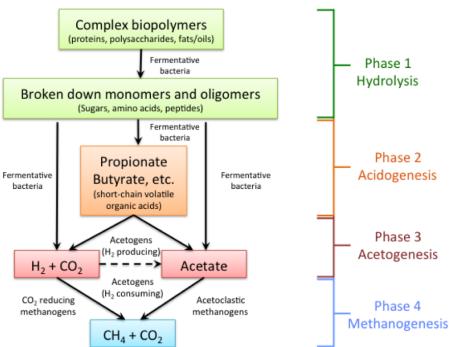
- Overview/Introduction
- Objective
- Theoretical modeling and setup
- Results and discussion
- Conclusion and path forward


- The biological pathway to produce H₂ and CH₄ shares similarities.
- Both consist of four generation steps, dominated by different microbial groups, which gives rise to different end products.
- A preliminary major challenge in the utilization of hydrogen is "sustainable production":
 - Current technology to produce hydrogen:
 - 1. Steam reforming of natural gas!
 - 2. Gasification of coal!
 - 3. Electrolysis of water!, and
 - 4. Steam reforming of CH₄!

Current Technology involve a significant amount of energy for generating the required heat

- Recent, studies is focusing on low production cost of energy through dark fermentation.
- Bio-hydrogen produced are those follow biological route, termed bio hydrogen (bio H₂), is viewed as a low energy solution

particularly considering organic waste source:


- 1. Biophotolysis of water,
- 2. Photo fermentation and dark fermentation of OM---> least_technological complexity_produces comparably high yields

- Fermentation or anaerobic digestion (AD) is a complicated dynamic biological process which involves multiple physicochemical and biochemical reactions in sequential and parallel pathways.
- The AD process is governed by different microbes with varied specific cell growth rates, substrate consumption capabilities and preferred environmental conditions, such as pH and temperature.
- This complexity renders the sensitivity of the AD to changes in environmental conditions and, thus, parameters will need to be carefully monitored to prevent process failure.
- Generally, AD is characterized by four distinct phases: *Hydrolysis; Acidogenesis; Acetogenesis; Methanogenesis*
- Hydrolysis of carbohydrates, protein and lipid has a theoretical CH₄ yield of 415 L CH₄/ kg VS, 496 L CH₄/ kg VS and 1014 L CH₄/ kg VS, respectively.

The four major steps during the AD of complex organic substrates

 \succ Because the biogas composition depends on the source:

- Sewage digesters \longrightarrow 55%-65% CH₄, 35%-45% CO₂ and <1% nitrogen by volume;
- Organic waste digesters \rightarrow 60%-70% CH₄, 30%-40% CO₂ and <1% nitrogen
- Landfills $-> 45\% 55\% CH_4$, 30%-40% and N₂ 5% -15% [Jönsson O, et al 2013].

Typically, biogas also contains hydrogen sulphide and other sulphur compounds such as siloxanes, aromatic and

Biogas	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	N ₂ (%)	H ₂ S (ppm)	Benzene(mg m ⁻³)	Toluene(mg m ⁻³)	Ref.
Landfill	47-57	37-41	<1	<1-17	36-115	0.6-2.3	1.7-5.1	S. Rasi et al. 2007
Sewage Digester	61-65	36-38	<1	<2	b.d.	0.1-0.3	2.8-11.8	S. Rasi et al. 2007
From Biogas Plant	55-58	37-38	<1	<1-2	32-169	0.7-1.3	0.2-0.7	S. Rasi et al. 2007
Landfill	59.4- 67.9	29.9-38.6	n.a.	n.a.	15.1-427.5	21.7-35.6	83.3-171.6	Shin H-C et al. 2002
Landfill	37-62	24-29	<1	n.a.	n.a.	<0.1-7	10-287	Allen MR et al. 1997
Landfill	55.6	37.14	0.99	n.a.	n.a.	3.0	55.7	Eklund B et al. 1998
Landfill	44	40.1	2.6	13.2	250	n.a.	65.9	Jaffrin A et al 2003
Sewage digester	57.8	38.6	0	3.7	62.9	n.a.	n.a.	Spiegel RJ, Preston JL 2003

Because there is no studies considering the reforming of biogas with compositional variation and the impact on the metrics.

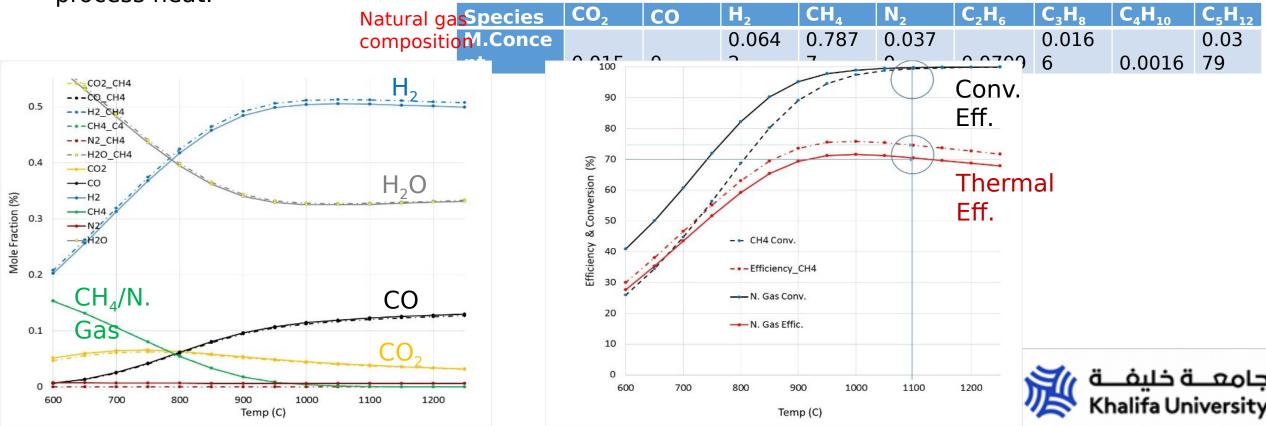
- This work fills this gap and undertakes the reforming modeling of biogas considering two different anaerobic digesting sources, i.e. landfill and Sewage Digester and benchmarks the analysis against natural gas reforming.
- Process metrics such as conversion percentage as well as thermal process efficiency will be delineated and compared.

HERAKLION 2019 7th International Conference on Sustainable Solid Waste Management, 26-29 June 2019, Crete, Greece INCOLUCITING AND SELUP

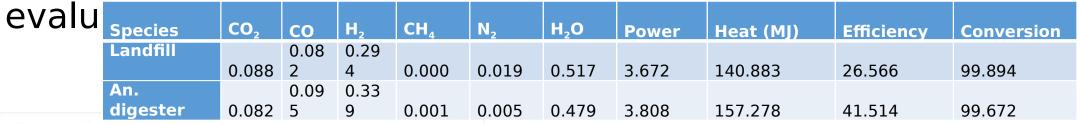
• Reforming of biofuel is a series of homogeneous reactions and involves many species and their intermediates.

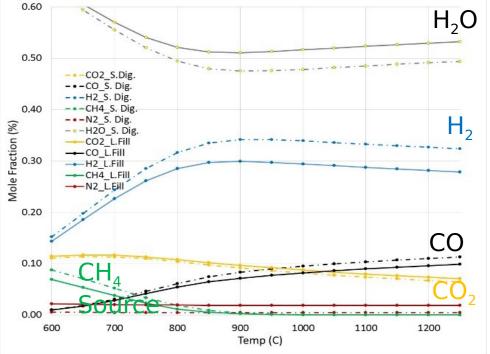
	forming reaction of the m										
an	and their corresponding heat of reaction seaction			Reaction energy (kJ/mol)			Description				
			Stoichion	netry							
		R1	Reaction#Reaction StoichiometryR1 $CH_4 + H_2 O \rightarrow CO + 3H_2$	Reaction energy (kJ/mol) +206	Description Methane steam reforming I	Reaction#Reaction StoichiometryR1 $CH_4 + H_2 O \rightarrow CO + 3H_2$	Reaction energy (kJ/mol) +206	Description Methane steam reforming I	Methane	steam	
			$\begin{array}{c} R2 \qquad \qquad CO + H_2 O \to CO_2 + H_2 \\ R3 \qquad \qquad CH_4 + 2H_2 O \to CO_2 + 4H_2 \end{array}$	-41 +165	CO Shift Methane steam reforming II	$\begin{array}{ccc} \textbf{R2} & CO + H_2O \rightarrow CO_2 + H_2 \\ \hline \textbf{R3} & CH_4 + 2H_2O \rightarrow CO_2 + 4H_2 \end{array}$	-41 +165	CO Shift Methane steam reforming II	reforming I		
		R2	$\begin{tabular}{ c c c c c c c } \hline Reaction & Stokchometry \\ \hline R1 & CH_4 + H_2O \rightarrow CO + 3H_2 \\ \hline R2 & CO + H_2O \rightarrow CO_2 + H_2 \\ \hline R3 & CH_4 + 2H_2O \rightarrow CO_2 + 4H_2 \\ \hline \end{tabular}$	Reaction energy (kl/mol) +206 =41 +165	Description Methane steam reforming I CO Shift Methane steam reforming II	$\begin{tabular}{ c c c c c c c } \hline Reaction Stochiometry \\ \hline R1 & CH_4 + H_2O \rightarrow CO + 3H_2 \\ \hline R2 & CO + H_2O \rightarrow CO_2 + H_2 \\ \hline R3 & CH_4 + 2H_2O \rightarrow CO_2 + 4H_2 \\ \hline \end{tabular}$	Reaction energy (kJ/mol) +206 -41 +165	Description Methane steam reforming I CO Shift Methane steam reforming II	CO Shift		
• De	etermine the molar or	R3	Reaction#Reaction StoichiometryR1 $CH_4 + H_20 \rightarrow C0 + 3H_2$	Reaction energy (kJ/mol) +206	Description Methane steam reforming I	Reaction#Reaction StoichiometryR1 $CH_4 + H_2O \rightarrow CO + 3H_2$	Reaction energy (kJ/mol) +206	Description Methane steam reforming I	Methane	steam	J streams (CH₄ source to
st	eam source) as well a		$\begin{array}{c} R2 \qquad \qquad CO + H_2 O \to CO_2 + H_2 \\ R3 \qquad \qquad CH_4 + 2H_2 O \to CO_2 + 4H_2 \end{array}$	-41 +165	CO Shift Methane steam reforming II	$\begin{array}{c} R2 \\ R3 \\ \end{array} \begin{array}{c} \mathcal{C}\mathcal{O} + \mathcal{H}_2\mathcal{O} \to \mathcal{C}\mathcal{O}_2 + \mathcal{H}_2 \\ \mathcal{C}\mathcal{H}_4 + \mathcal{2}\mathcal{H}_2\mathcal{O} \to \mathcal{C}\mathcal{O}_2 + \mathcal{4}\mathcal{H}_2 \end{array}$	-41 +165	CO Shift Methane steam reforming II	reforming II		s (as well as pressures).

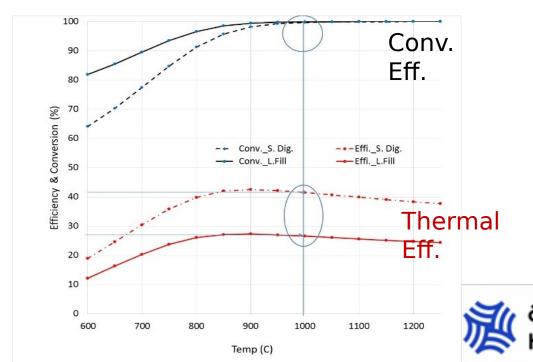
- An equilibrium based model is developed by considering three reaction constants, elemental mass balance and chemical/formation and thermal/sensible energy balance.
- The main assumption is that the process takes infinite residence time, occurs under chemical and thermodynamic equilibrium, neglecting reaction kinetics, no intermediate species, ideal mixing and fixed spatial distribution of species.
- Feed 1 can be a pure CH₄ or combination of CH₄ rich species as in the case of natural gas (CO, H₂, C₂H₄, C₃H₆, C₄H₁₀ and C₅H₁₂) and the outcome of the digestion process (CH₄ and CO₂).
- Total of 8 unknowns are generated governed by 8 equations and these are the 4 elemental balance of each of C, O, H, and N, the (one) total heat balance, the three equilibrium reaction of Steam Reforming (R1), CO-shift (R2) and Steam Reforming II (R3). Each reaction is associated with equilibrium equation in terms of the concentration Kc (or the partial pressure Kp) as follows:


$$K_{c}(T) = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \qquad \qquad k_{c}(T) = A_{r}T^{\beta_{r}}e^{-\frac{E_{r}}{RT}}$$

 $\sum_{i=1}^{n \ product} \dot{n}_i \ h_i = \sum_{i=1}^{n \ react} \dot{n}_i \ h_i + \dot{Q}$

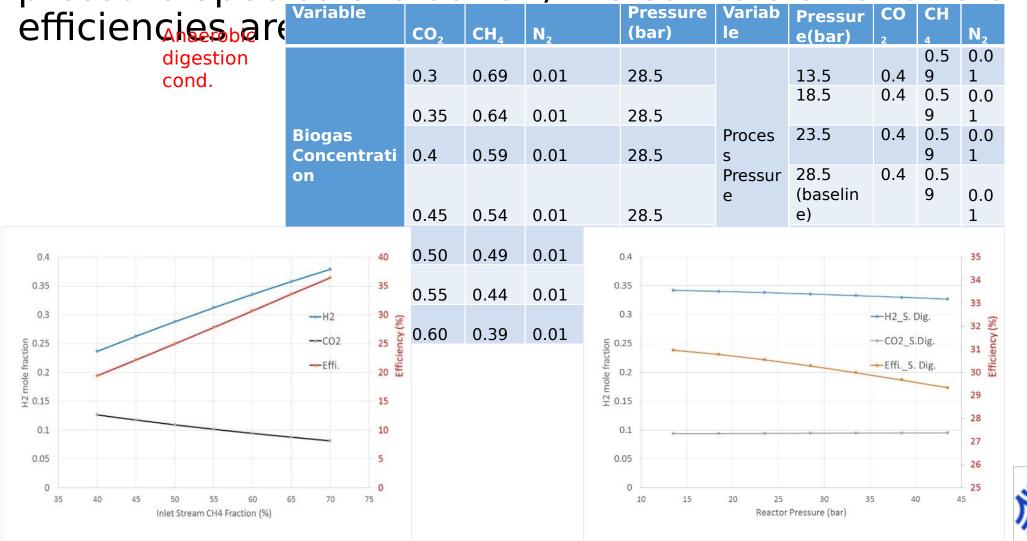

Results and discussion


- Baseline analyses are carried at fixed pressure of 30 bars and sweeping values of temperature 650°C-1250°C.
- Additional to species evaluation, the conversion and reforming efficiencies are evaluated:
 - The conversion efficiency: the ratio of the remaining CH_4 mass to the feed CH_4 mass
 - The reforming/thermal efficiency is the heating value of H₂ to the feed stream heating value+ added process heat.



Results and discussion

- Condition of anaerobic digestion at fixed pressure of 30 bars and at sweeping values of temperature AGE OF C- Species CO2 CH4 N2
 Species CO2 CH4 N2
 Species CO2 CH4 N2
 Species CO2 CH4 N2
- Species evaluation, the conversion and Digester


0.375

0.6

0.025

Results and discussion

 Sensitivity of anaerobic digestion at different press and temp pressure Species evaluation, the conversion and reforming

- In this work, bio H₂ production through biogas reforming is carried out from two sources the landfill and anaerobic digester. The main difference in these streams are the concentration of the CH₄.
- A reforming model that is based on equilibrium was developed and is validated with respect to the two conventional streams, namely natural gas and pure CH₄.
- The model is then used to assess the molar concentration of the hydrogen produced and reforming efficiency under different conditions including the methane concentration and reactor temperature and pressure.
- Results shows that methane concentration has the most pronounced influence on the produced hydrogen and, consequently, the reforming efficiency.
- These values are around 0.5 molar fraction for H_2 and reforming efficiency nearly 75% for conventional stream, while are near 0.3 molar fraction and best reforming efficiency near 36%.
- Although this work states the technical feasibility of reforming the biogas stream, low efficieny is clear drawback is that needs further research to improve it.
- Under progress is high fidelity modelling:

Activation energies and pre-exponential factors for SMR process via reactions 1 (SMR), 2 (WGS) and 3 (SMR/							
2 (WGS) and 3 (SMR/WGS) over 18 wt. % NiO/a-Al2O3. Reaction parameters of this work (S.Z. Abbas*, V. Dupont, T. Mahmud) vs Xu and Froment							
			[22]				
	CH4+ H2O=CO+ 3H2 DH298+20	6 E1 [kJ/mol] 257.01*	Ao,1 [mol bar0.5 /g.s] 5.19e9*		جامعــة د		
R1	kJ/mol	240.10	1.17e12		University		
	CO+ H2O=CO2+H2 DH298-41	E2 [k]/mol] 89.23*	Ao,2 [mol/ bar.g.s] 9.90e3*		Oniversity		