Incorporating Relative Importance

selecting a polyphenol production method for agro-waste treatment in an environmental and economic multi-criteria decision making context

By: Joshua Sohn, Giovanna Croxatto Vega, Morten Birkved, Stig Irving Olsen

Presented by: Joshua Sohn

DTU Management Engineering Department of Management Engineering

Horizon 2020 European Union Funding for Research & Innovation Grant Agreement #688338

NCAW

 $f(x+\Delta x)=\sum_{n=1}^{\infty}$

Overview

- Introduction to TEA and LCA
- Introduction to MCDA
- Application in the assessment of polyphenol extraction technologies

Techno-Economic Assessment - Introduction

Life Cycle Assessment - Introduction

Photo: www.agc-glass.eu

Life Cycle Assessment - Introduction Emissions: The Cause and Effect Chain

Life Cycle Assessment - Introduction The Uncertainty Trade-Off

Particulate matter form.

Human toxicity

We usually stop at midpoint...

In part because the uncertanty of the endpoints is too high...

But, this, along with the TEA, leaves us with the **multiple** criteria problem

Life Cycle Assessment – Introduction The multiple Criteria Problem

Multiple-Criteria Decision Assessment (MCDA)

Introduce impact relavance

to make relavant decisions.

Photo: <u>https://www.ministryinsights.com/interlocking-pieces/</u> Adapted from: Multi-Criteria Decision Analysis for Healthcare 2014.03.12 Kwon, Sunhong

Introduction to MCDA: TOPSIS

The Technique for Order of Preference by Similarity to Ideal Solution

• Measures idealness:

minimizing the Euclidean distance to the ideal solution and maximizing Euclidean distance to the anti-ideal solution

• **Compensatory**: good performance in one criteria can compensate for poor performance in another

Introduction to MCDA: TOPSIS

10 **DTU Management Engineering, Technical University of Denmark**

MCDA - Criteria Weighting

- In order to correlate the multiple criteria, a weighting profile is introduced to relate the importance of each of the criteria with respect to the others
 - Personal/constituent values

Scientific consensus/modelling

- Performance demands/thresholds
- Etc.

MCDA Application to Polyphenol Extraction

S-Acn-5 S-Acn-2 S-EtOH-5 S-EtOH-2 PLE-EtOH-10 PLE-EtOH-5

MCDA Application: weighting

13

• Developed using relationship of environmental impacts to the emissions of an average european

MCDA Application: weighting

• Developed using relationship of environmental impacts to the emissions of an average european

Fine particulate matter formation	Fossil resource scarcity	Freshwater ecotoxicity	Freshwater eutrophicatio n	Global warming	Human carcinogenic toxicity	Human non- carcinogenic toxicity	lonizing radiation	Land use	Marine ecotoxicity	Marine eutrophicatio n	Mineral resource scarcity	Ozone formation, Human health	Ozone formation, Terrestrial ecosystems	Stratospheric ozone depletion	Terrestrial acidification	Terrestrial ecotoxicity	Water consumption
12.83	276.36	183.72	86.75	58.98	59.26	3.93	28.40	0.61	161.97	0.86	0.004	23.98	28.77	2.05	21.34	42.57	7.62

Important	Unimportant
Fossile Resource Scarcity (276)	Mineral Ressource Scarcity (0.004)
Freshwater Ecotoxicity (183)	Land Use (0.6)
Marine Ecotoxicity (161)	Marine Eutrophication (0.9)
Freshwater Eutrophication (86)	Stratospheric Ozone Depletion (2.0)
Human Carcinogenic Toxicity (59)	Human Non-Carcinogenic Toxicity (3.9)
Global Warming (59)	Water Consumption (7.6)

MCDA Application to Polyphenol Extraction

S-Acn-5 S-Acn-2 S-EtOH-5 S-EtOH-2 PLE-EtOH-10 PLE-EtOH-5

MCDA Application to Polyphenol Extraction: Conclusions

Introductinggrede DiAcailopartan dearespoverst dealtery for de designment priteria

Questions?

