

Synthesis, characterization and applications of carbon-based calcium catalysts deriving from avocado seeds for biodiesel production

PRin

L. di Bitonto, H.E. Reynel-Ávila, D.I. Mendoza-Castillo, C.J. Durán-Valle, A. Bonilla-Petriciolet, and C. Pastore

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT 26-29 June 2019, Heraklion, Crete Island, Greece

ANAGEMEN

Fossil fuels vs Riofuels

WASTE MANAGEMENT

Biodiesel

F. Ma, M. A. Hanna, Bioresource Technologies, vol. 70, pp. 115-118,

Homogeneous basic catalysts

WASTE MANAGEMENT

IProPBio

Homogeneous

catalysis defrimed the use of strong acids and - bases - Loss of the catalyst

- Neutralization and removal of from the chemical products

- Cheap
- Abundant
- Efficient
- Leaching

Heterogeneous

- catalors in plant management
- Recovery of the catalyst
- Thermal and chemical resistance of catalysts
 Easy purification of the
- products

WASTE MANAGEMENT

Part 1. Preparation of CaO-deposited on biochar

- Preparation of biochar
- Deposition of Ca onto the biochar

Preparation of biochar

900 °C, 2h under nitrogen flow

IProPBio

Carbon avocado seeds					
С	H	Ν	S	0	
85.03	2.15	1.99	0.05	10.78	

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID ANAGEMEN **Deposition of Ca onto avocado-char IProPBio Activation** 1) 1h, 80 °C **1.5 N NaOH** Calcium solution carbon-based materials 900 2) washing 1h, 25 °C with water under stirring **Metals supported** 3) dried 900 °C, 2h 20%wt Ca in oven under nitrogen flow **10%wt Ca Metal salts** 100 °C, 24 h **5%wt Ca** solution CaO Avocado seed Ca(OH)₂ carbon char

Part 2. Characterization of Ca carbon-based materials

- Elemental analysis
- Determination of acid and basic sites, piezoelectric point
- FT-IR analysis
- XRD analysis
- SEM analysis

WASTE MANAGEMENT

Elemental analysis

Table 1. Elemental analysis for determination of Ca content for pure and Ca-carbon supported materials.

Catalysts	Theoretical value (%wt)	Experimental Value (%wt)
20%wt Ca carbon avocado seed	20	14.3 ± 0.5
10%wt Ca carbon avocado seed	10	7.9 ± 0.2
5%wt Ca carbon avocado seed	5	3.4 ± 0.1
CaO	71.5	64.1 ± 2.1
Ca(OH) ₂	54.1	52.7 ± 1.8

XRD analysis: calcium compounds (supported materials)

SEM analysis

WASTE MANAGEMENT

Part 3. Catalyst reactivity for biodiesel production on refined oils

- Reactivity tests of pure metal compounds and supported catalysts
- Kinetic studies
- Optimization of reaction conditions
- Recycling tests
- Reactivity tests with other bio-oils

Trans-esterification using Ca-supported materials as catalysts. Reaction conditions: weight ratio catalyst to oil = 5%, molar ratio methanol to oil = 15:1, temperature = 100 °C, time = 3 h. Sunflower oil

WASTE MANAGEMENT

Kinetic studies

Effect of Temperature

WASTE MANAGEMENT

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT

Kinetic studies

80-100 kj K⁻¹ mol⁻¹

Ea = 39.94 kJ K⁻¹mol⁻¹ 20-30 kj K⁻¹ mol⁻¹

Linear interpolation for Ea determination.

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT

Optimization of reactive conditions

Box-Behnken design matrix for the four independent variables for the production of FAMEs (27 experiments).

atalyst (%wt)= 2.5, 5, 10 (cat)

Methanol (molar ratio to oil): 10, 15

emperature (°C) = 60, 80, 100 (T)

Time (h) = 1, 3, 5 (t)

Fitting equation:

Yield FAMEs = -162.71 + 4.46733cat + 4.50325C + 1.82206T + 7.69187t - 0.230933cat² - 0.139cat C + 0.0362cat T + 1.156cat t + 0.00551667C² - 0.03785CT + 0.40475Ct - 0.00518333T² + 0.131688Tt - 2.97052t²

Recycling tests and mechanism

Reactive conditions

Sunflower oil (Acidity = 0.21 mg KOH/g)

Weight ratio catalyst to oil = 7.3%

Molar ratio methanol to oil = 15.6:1

Temperature = 99.5 °C

Time = 5 h

Cycles of reaction

Recovery and reuse of catalyst

- Separation from organic mixture by centrifugation
- Washing with methanol
- Dried in oven (100 °C, 3 h)

11.5 mg Ca lost = 16.1 mg CaO

Reacting an equivalent amount of the Ca lost during the 1° cycle under the same experimental conditions

Yield FAMEs = 31.4 ± 0.4 %wt

Catalysis occurred mainly onto the surface

WASTE MANAGEMENT

WASTE MANAGEMENT

81.0

3

99.3

3

90.0

2

99.4

2

Cycles of reaction

Cycles of reaction

26-29 June 2019, Heraklion, Crete

se of waste cooking oil

MeOH AICI₃ 6H₂O

1193-1200.

Conclusions

- 1. A new catalyst was prepared and characterized
- 2. Reaction conditions were optimised
- 3. Kinetics was studied
- *4. Procedures to recover and recycle were critically studied and optmized*
- 5. Application to waste cooking oil was positively verified

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 778168

Thank you for your kind attention!

Please visit our internet site:

http://ipropbio.sdu.dk/