

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

From wine pomace and potato wastes to novel PHAbased bio-composites: examples of sustainable routes for full valorisation of the agro-wastes

M. Vannini,¹, P. Marchese¹, L. Sisti¹, A. Celli¹, M. Ferri¹,², S. Monari², A. Tassoni², M. Ehrnell³, L. Eliasson³, E. Xanthakis³, T. Mu⁴, H. Sun⁴

¹ Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Italy; ²Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy; ³Agrifood & Bioscience Unit, RISE – Research Institutes of Sweden, Sweden; ⁴Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, China

NCAW

Choice of polymeric matrix

Poly(hydroxyalkanoate)s **(PHA)s** are a family of microbial biopolymers.

They have excellent biocompatible and biodegradable properties

The PHAs are particularly **expensive**

and lack mechanical properties.

PHBV: poly(3-HydroxyButirate-co-Valerate)

Composites preparation

The composites are prepared by melt mixing in a **Brabender microcompounder**.

load: 45–50 g screw speed: 50 rpm temperature: 200 °C mixing time: 5 min

For each fiber residue, different blends were prepared containing **5, 10** or **20 wt%** of residue.

Characterization of chemically extracted resid (UNIBO)

Gargane ga (WHITE) residue

white

Unibo

pomaces from Merlot (RED) residue

Characterization of chemically extracted residue

ALMA MATER STUDI

Temperature (°C)

Bio-composites with residue from solvent extracted red and white pomaces

Sample code	1° hea scan	ting ∆H _m (I/a) ▷	coolin T _c (°C) د	g scan ΔΗ _c (I/α) ^c	2° hea sœan (°C)₫	ting
PHBV	172		114	73	168	82
PHBV-W- 5CE	171	78	111	72	168	80
PHBV-W- 10CE	170	71	111	67	168	78
PHBV-W- 20CE	169	63	109	57	167	66
PHBV-R- 5CE	170	72	112	68	168	77
PHBV-R- 10CE	169	74	110	65	168	74
PHBV-R- 20CE	170	64	108	57	168	66

First scan, from 30 to 210°C at 20°C/min; 1 min at 210°C; cooling scan, from 210°C to 0°C at 20°C/min; 1 min at 0°C; second scan, from 0 to 210°C at 20°C/min.

All the composites are stable over 230°C. The thermal stability slightly decreases with the filler content.

Tensile tests

Characterization of pressurized extracted residue-comparison between the methods

Tensile tests on bio-composites based on red pomaces residues

Bio-composites with potato's residue

ALMA MATER STUDI

First scan, from 30 to 210°C at 20°C/min; 1 min at 210°C; cooling scan, from 210°C to 0°C at 20°C/min; 1 min at 0°C; second scan, from 0 to 210°C at 20°C/min.

Tensile tests on bio-composites based on potato residues

3,5 2,5 2,0 1,5 1,0 0,5

PHBV

PHBV-5Pot

PHBV-10Pot

PHBV-20Pot

ALMA MATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

Conclusions

- New bio-composites based on PHBV have been prepared by compounding.
- The content of filler has been 5, 10 or 20 wt%.
- The filler is deriving from **potatoes** and **pomaces**. In particular, the filler is the residue after further valorization of wastes of potato and pomaces processing.
- The bio-composites are thermally stable and easily processable.
- The Young Modulus remains fairly constant whereas the strenghth and the elongation slightly decrease meanwhile the material cost decreases.
- In some cases, the elongation has been maintained (red UNIBO pomaces) or improved (red RISE pomaces and potatoes).
- The filler-matrix interface compatibility will be studied by SEM.
- The use of a compatibilizer will be evaluated and tested in the future

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Micaela Vannini

Department of Civil, Chemical, Environmental, and Materials Engineering

micaela.vannini@unibo.it

www.unibo.it

RISE (Sweden) DTU (Denmark) AAU (Denmark) **DLO-FBR (The Netherlands)** FRAUNHOFER (Germany) **INRA (France, Coordinator)** UM (France) **UNIROMA (Italy) UNIBO (Italy) CBHU (Hungary)** IAUS (Serbia) **NTUA (Greece)** ITRI (Taïwan) SEE (Hong Kong) SYSU (China) **IAPPST** (China)

BioVantage (Denmark) AGRIPORT (The Netherlands) ECOZEPT (Germany) IBBK (Germany) **VERMICON (Germany)** SCHIESSL (Germany) SOFIES (Switzerland) IFV (France) **INOSUD (France) APESA (France)** IT (France) **INNOVEN** (Italy) **CONFAGRICOLTURA (Italy) IBET (Portugal)** /A (Serbia) TIANAN (China)

NCAW

NoAW's partners:

NoAW is coordinated INRA by (France) and the consortium involves 32 partners from universities, public research organizations and other institutions from a dozen countries (16 academics 16 privates - + or associations).

1) Solvent-based extraction

Optimised chemical extraction with 75% (v/v) acetone was selected as the best process for the recovery of bioactive molecules from both red and white grape pomace.

Merlot (RED) residue

Gargane

ga

(WHITE)

residue

Potato residues from IAPPST (Institute of Agro-Products Processing Science &

Technology, Chinese Academy Agricultural Sciences)

Potatoes

isoelectric or ammonium sulfate precipitation method

Waste water

Thermostable αamylase treatment

Protein

Drying

Starch processing

Residues

Acid extraction

Dehydration

Pectin product

Ethanol precipitation

Potato residues from IAPPST (Institute of Agro-Products Processing Science &

Technology, Chinese Academy **Magricultur**al Sciences)

Potatoes

isoelectric or ammonium sulfate precipitation method

Protein

Waste water

Drying

Starch processing

Residues

Ethanol precipitation

Thermostable αamylase treatment

Dehydration

About 2 million tonnes (dry basis) of sweet potato residues are produced during starch processing every

Pectin product

Acid extraction

VOOR