

Rapid bacteriological quantification using defined substrate enzymatic activity in municipal wastewater

Dr. Pascale Champagne, Ph.D., P.Eng., D.WRE, F.ASCE, F.EWRI David Blair, BASc.

2019 Heraklion, Greece

Introduction

Project Objective

 Rapid E. coli detection in municipal wastewater treatment systems

Field Site

- Amherstview WPCP (rated peak capacity: 16,000 m³/day)
- South Eastern Ontario, Canada

Industry Partner & Technology

• TECTA-PDS Inc. (Formerly *Veolia Endetec*)

Wastewater Treatment Systems in Canada

2016

Use of lagoons

Features	> 100,000	> 25,000	> 5,000	> 1,000	< 1,000	Not Give n	Total
All facilities	30	55	136	289	178	50	738
1 or more lagoon types	2	11	66	190	116	25	410
% with 1 or more lagoons	6.7	23.0	48.5	65.7	65.2	50.0	55.6
No. with Aerobic lagoons	1	5	44	117	31	12	210
No. with Anaerobic lagoons		1	9	50	46	11	117
No. with Facultative lagoons	1	6	30	52	59	5	153

Compliance Monitoring and Toxicity Testing

•			,		
न्दिल धांगर	ments (m)day)	TRC ¹ (or dechlorination agent)	TSS and CBOD₅	Acute Toxicity	Chronic Toxicity
Very Small	≤ 500	Daily	Monthly ²	n/a	n/a
Small	> 500 – 2,500	Daily	Monthly ²	n/a	n/a
Medium	> 2,500 - 17,500	Daily	Every 2 weeks	Quarterly	Quarterly
Large	> 17,500 – 50,000	Twice per day	Weekly	Quarterly	Quarterly
Very Large	> 50,000	Three times per day	Five days per week	Monthly	Monthly

CCME Council of Ministers.

2009

Sampling Locations

Amherstview Water Pollution Control

Known Interferen ts

- Chlorophyll-a
 - Turbidity
- Total Suppended Solids

- Chemical Oxygen Demand
- Total Organic Carbon
- Dissolved Organic Matter
- Fats, Oils, and Grease

Bacteria

- Membrane Filtration
- Agar Plates
- TECTA-PDS

Instrument

Instrument: TECTA - PDS

Florescent 100mL Water Sample signal detected

Targeted

Florescent Spectra in Wastewater

- Excitation: single wavelength
- Emission: 200-700 nm spectrum
- Recorded temporally (0-18 hr.)
- Correlative bacteria quantity to florescent "time-to-detection" (TTD)

Instrument Calibration

- Correlative bacteria quantity to florescent signal
- Based on *Monod* Growth Kinetics $\mu = \mu_{\max} \frac{1}{K + |S|}$
 - First-order rate constant particular to the exponential growth phase of cultures described
 - Not subject to substrate inhibition
 - Concentration of available substratebinding enzyme considered proportional to the bacterial density
- Proprietary trigger/data processing

Comparison to Reference Method

	Deviation from Reference Method		
Aerati on	EC	TC	
Basin	-0.1 ± 2.3	2.9 ± 0.4	
• E. coli: high variation			

- Total coliforms: low variation, high deviation from reference method
- Existing method is not viable

Effects of Sample Pre-treatment

Dilutio n

Decreases all water quality parameter s

Decreases amount of bacteria

Filtrati on

Removes suspende d material

Decrease Turbidity

Chlorophyl I-a

Effects of Sample Pre-treatment

Aerati	Deviation Reference		Avg. Detection Time (hr.)		
on Basin	EC	TC	EC	TC	
Raw	0.3 ± 2.3	4.2 ± 0.4	5.06	2.95	
Filtered (8 µm)	-1.8 ± 0.5	-0.1 ± 0.3	7.58	8.13	
Diluted (10:1)	-3.3 ± 0.4	4.9 ± 0.4	2.57	3.34	
Filter & Dilute	-1.8 ± 0.3	0.1 ± 0.4	8.55	8.88	

Results on Naturalized Treatment Systems

Method	Deviation from Reference Method			
Method	EC	TC		
Standard	0.4 ± 0.4	-1.2 ± 0.8		
Calibrated	0.0 ± 0.4	0.0 ± 0.8		

Results on Naturalized Treatment Systems

	Deviation from Reference Method			
Method	EC	TC		
Standard	0.6 ± 0.5	-0.8 ± 1.3		
Calibrated	0.0 ± 0.4	-0.1 ± 1.3		

Detection Time by Sampling Point

- TTD < 12h for both *E. coli* and total coliforms across all sampling points
- Potential microbial control parameter with "near-real time" qualification
- Least variance in secondary clarifier
- Less variance in total coliforms than E. coli

Water Characterization

Evaluation of Final Spectra

Multivariate statistics show no strong-correlation, but multiple medium correlations

Confounded effects of water parameters

Prevents statistical isolation in 18

Conclusions

"Near real-time" bacteria quantification

- 2-3.5 hrs in secondary treatment
- 5-10 hrs in naturalized systems

Method robustness is primary dependent on water organics

- FOG levels significantly reduce signal
- Insufficient signal detection above 75 mg/L

Custom Calibration

- Slope-intercept calibration improves mean but not variance in quantification
- Raw vs. partially treated WW require different calibration method

Chlorophyll Interference

- Levels found in naturalized systems have little impact on florescent attenuation
- Seasonal algae blooms is noticeable but insignificant in signal attenuation

Acknowledgements

Oueen's

David Blair

Dr. Stephen Brown

Eric Marcotte

Rami Maassarani

Brooke Sanders

Ahrani Gnananayakan

Champagne Bioresearch Group

