Investigations of micro- and nanoplastic toxicity using a model aquatic invertebrate and a model insect

Nathalie Tufenkji

Professor and Canada Research Chair Department of Chemical Engineering, McGill University Montreal, Canada

Microplastic and Nanoplastic Pollution on Land

Plastics enter soils via direct application on cropland, wastewater biosolids, release from landfills, etc...

> Plastic litter breaks down into secondary microplastics and nanoplastics.

Tufenkji and Emelko *Encyclopedia Env*

Need for Studies on Freshwater and Terrestrial Animals

Few studies of micro/nanoplastic uptake in terrestrial or freshwater organisms

yen et al, Accounts of Chemical Research, 2019.

Animal models in this study

Daphnia magna (water flea)

Transparent, fast reproduction, cheap and easy to work with.

Drosophila melanogaster (fruit fly)

Genetic, proteomic, and physiological similarities to humans

Study 1. Chronic Effects of Leachate of Weathered Plastic

80 g plastic debris/L

Study 1. Chronic Effects of Leachate of Weathered Plastic

80 g plastic debris/L

Study 1. Chronic Effects of Leachate of Weathered Plastic

Secondary Microplastics and Nanoplastics in Leachate

21.2×10⁶ particles/mL

There are 500 times more nanoplastics than microplastics.

Plastic Leachate Contains Low Metals but Complex Organics

Several metals are detected at concentrations $< LC_{50}$ in *Daphnia*.

A complex mixture of ² organic compounds, ⁰ including bisphenol A is released from the ^{1.25} plastics. ^{0.25}

Leachate Affects Growth, Reproduction, and Physiology

Observed sublethal effects due to mixture of microplastics, nanoplastics and leached chemicals.

Study 2. Acute Effects of Food Packaging Debris

rnandez et al, Environ. Sci. Technol., under review.

Food Packaging Releases High Levels of MPs and NPs

Dried Teabag Leachate

mean diameter ~ 25 μm mean diameter ~ 100 nm

 $\begin{array}{ccc} \sim 2 \times 10^6 & \sim 15 \times 10^9 \\ \text{particles/teab} & \text{particles/teab} \\ \text{ag} & \text{ag} \end{array}$

When drinking 1 cup of tea, a person can ingest:

2 million micro-sized plastics

15 billion sub-micron plastics

rnandez et al, Environ. Sci. Technol., under review.

Study 2. Acute Effects of Food Packaging Debris

rnandez et al, *Environ. Sci. Technol.*, under review.

Food Packaging Debris Affects Fly Survival and Behavior

Female flies are more susceptible than male flies.

Food Packaging Debris Affects Fly Survival and Behavior

SEM of fruit fly eyes

- Bulk plastics can degrade into millions of microparticles and billions of nanoparticles
- Weathered plastic leachate can exhibit low toxicity but can impact growth, reproduction and feeding behavior.
- Plastic use in food packagings can lead to undesirable contamination of foods with high levels of micro- and nanoplastics

Acknowledgements

Students and Postdoc

Dr. Genbo Xu Dr. Vimal Maisuria Rachel Cheong Laura Hernandez Agil Azimzada

Collaborators

Prof. Hans Larsson Prof. Stephane Bayen

Funding Agencies

Canada Research Chairs Program Canada Foundation for Innovation NSERC

McGill University Faculty of Engineering

We have a funded postdoc position in ecotoxicology. Please contact me!

visit us: www.biocolloid.mcgill.

Extra Slides

Scanning electron microscopy is used to image plastic particles on the carapace and antenna of *Daphnia*.

Secondary Microplastics and Nanoplastics in Leachate

Proposed formula	Tentative identity
ESI+	
C ₉ H ₁₉ NO ₄	Dexpanthenol
C ₈ H ₁₉ NO ₂	N-Butyldiethanolamine
C ₁₇ H ₂₆ O ₃	4-Nonylphenoxyacetic acid
C ₂₀ H ₃₄ O ₄	1,4-Bis{2-[(2-methyl-2-propanyl)peroxy]-2-propanyl}benzene
C ₂₂ H ₃₀ O ₄	Bis(4-methylcyclohexyl) phthalate (4-Methalate)
C ₂₂ H ₃₀ O ₄	Bis(4-methylcyclohexyl) phthalate (4-Methalate)
$C_{20}H_{30}O_{2}$	Abietic acid
ESI-	
C ₇ H ₈ O ₃ S	Toluene sulfonic acid
C ₁₃ H ₂₂ O ₄	Dibutyl itaconate
C ₇ H ₇ NO ₃	5-Aminosalicylic acid
C ₁₃ H ₁₆ O ₄	Monopentyl phthalate
C ₂₀ H ₂₂ O ₃	Avobenzone
$C_{12}H_{16}O_{3}$	2,2-Diethoxyacetophenone
$C_{15}H_{16}O_{2}$	Bisphenol A (BPA)*
C ₂₀ H ₃₄ O ₄	1,4-Bis{2-[(2-methyl-2-propanyl)peroxy]-2-propanyl}benzene
$C_{20}H_{30}O_{2}$	Abietic acid