Case studies of biomass co-firing in full-scale pulverized coal-fired (PC) power plants in China

Xuebin Wang¹, Lan Zhang², Yiming Zhu¹, Shuanghui Deng¹, Zhaomin Lv¹, Renhui Ruan¹, Houzhang Tan¹

¹ Xi’an Jiaotong University,
² Henan Province Boiler pressure vessel safety inspection institute

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT
26-29 June 2019, Heraklion, Crete Island, Greece
1. Background and motivation.

Biomass-fired power plants in China

- Actual: >16 GW (2019)
 - Half: agriculture and forest biomass
 - Half: municipal waste
Problems of biomass-fired furnace

- Ash deposition, corrosion.
- Low combustion and generating efficiency
 - UBC in ash > 35%
 - Generating efficiency < 30%

Biomass co-firing ^_^
Coal-fired power plants in China

- Total capacity: 1144 GW
- Ultra-low emissions
 - NOx < 50 mg/m³
 - SOx < 35 mg/m³
 - PM < 5 mg/m³
- Near-zero emissions
 - NOx < 25 mg/m³
 - SOx < 10 mg/m³
 - PM < 1 mg/m³
2. Current situation of biomass co-firing in pulverized coal-fired power plants in China

“Biomass co-firing” → “biomass coupling generating”
Biomass (gasification) coupling generating in large-scale PC power plants

Biomass gasifier + Coal-fired power plant
The only one case of “biomass gasification coupling”: Guodian Changyuan Jinmen Power Plant

- Biomass: 8-10 t/h.
- CFB gasifier.
- 600 MW coal-fired unit.
- Commercially operated since 2012.11.
- 0.75 RMB/kwh.
 - Other in Hubei, +0.081RMB/kwh.
Advantages and questions of “biomass gasification coupling”

Advantages:
1. Gas transporting temperature >400°C, avoid tar condensation in pipelines.
2. Able to on-line measure the gas composition, heating value, and flux, thereby obtain the feed-in subsidy price: 0.75 RMB/kwh.

Questions (2018.5):
1. Avoid coal-blending?
2. Tar in gasifier?
3. High investment: 60,000,000 RMB (8-10t/h, 10 MW).
4. Complex system, need to retrofit the coal-fired furnace.
5. Coal gasification? (effective monitoring?)
6. Inherent operating problems of CFB boilers/gasifiers.
7. Fouling in gasifier’s heat exchanger?
8. Gasification efficiency?
9. Bio-char market?
News: no subsidy for “biomass coupling generating” from the State Level-2018.6

☐ The subsidy (0.75 RMB/kwh) for the only project obtaining the subsidy from the State Level was canceled, since 2018.6.
☐ Whether subsidy or not depends on the local government.
Another mode of biomass co-firing: “Huadian Shiliquan”, the first one in China since 2005.

Coal fired furnace: 400t/h, tangential combustion.
Fuel: wheat straw and corn straw.
Designed straw capacity: 105000 t/year, accounting for 18.6% energy input.
Time: put into operation since 2005. 12.
The problems of “Huadian Shiliquan Mode” co-firing.

Technical:

1. The imported equipment for fuel treatment and combustion, huge investment >85,000,000 RMB.
2. The uncontrolled biomass price: 200 RMB/t → 500 RMB/t.
3. The equipment for fuel treatment can only cut straw.
4. Straw supplying is not enough: the actual co-firing ratio is only ~5%.

Policy:

2. Local government: obtain the additional subsidy of 0.08 RMB/kwh.
XJTU-Bao’er mode: briquette biomass co-firing

Additional benefits:

- Zero investment for power plant
- Long commercial chain, increasing job positions
- Decrease transporting cost
- Larger co-firing amount
Tested Furnace and Biomass Feeding

■ Furnace Parameters
 - 300MW, 1025t/h
 - Tangentially fired furnace
 - A-F, 6 layer combustors
 - Medium-speed roller mill
 - Direct-blow coal powder system

■ Position of Biomass Feeding
 - F bunker (standby one)
Fuel Characteristics

<table>
<thead>
<tr>
<th>Fuel</th>
<th>(Q_{\text{net,ar}})/MJ.Kg(^{-1})</th>
<th>Proximate analysis</th>
<th>Ultimate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M_{\text{ar}})</td>
<td>(V_{\text{daf}})</td>
<td>(A_{\text{ar}})</td>
</tr>
<tr>
<td>Huating Coal</td>
<td>18.5</td>
<td>35.5</td>
<td>17.6</td>
</tr>
<tr>
<td>Straw pellets</td>
<td>12.6</td>
<td>79.3</td>
<td>28.3</td>
</tr>
</tbody>
</table>

- The straw pellets is prepared by compressing and extruding a mixture of biomass (straw) and a binding agent (local soil).
- The mold biomass pellets are 34mm in diameter and less than 65mm in length, with a density of 1.18g/cm\(^3\).
Test Conditions

<table>
<thead>
<tr>
<th>Condition No.</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Load / (MW)</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Biomass Quantity / (t/h)</td>
<td>-</td>
<td>12</td>
<td>24</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>Primary Air of Mill F / (m³/s)</td>
<td>-</td>
<td>21.74</td>
<td>19.37</td>
<td>15.99</td>
<td>18.70</td>
</tr>
<tr>
<td>Inlet Temperature of Mill F / (C)</td>
<td>-</td>
<td>78</td>
<td>83</td>
<td>86</td>
<td>84</td>
</tr>
<tr>
<td>Outlet Temperature of Mill F / (C)</td>
<td>-</td>
<td>48</td>
<td>43</td>
<td>42</td>
<td>43</td>
</tr>
<tr>
<td>Ratio of Primary Air / (%)</td>
<td>25.1</td>
<td>30.7</td>
<td>30.3</td>
<td>29.2</td>
<td>32.1</td>
</tr>
<tr>
<td>Overall Furnace equivalence ratio / (1)</td>
<td>1.184</td>
<td>1.191</td>
<td>1.183</td>
<td>1.180</td>
<td>1.195</td>
</tr>
</tbody>
</table>

Target Characters

- Practicality and safety of the mill operation;
- Furnace temperature and efficiency;
- Pollutant emission;
- Ash availability in cement industry.
(1) Practicality of biomass grinding & Safety of mill operations

The roller mill can be used for pulverizing the mold biomass pellets.

- To avoid current overload and blockage of the mill.
 - Biomass feed rate should not be too high
 - Carrying airflow rate should be adequate

The following graph shows the effect of biomass feed rates and primary air flow rate.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Power Limit (KW)</th>
<th>Current Limit (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>349</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Effect of biomass feed rates & primary air flow rate
(2) Flame & Temperature profiles

No.1 12t/h No.2 24t/h

Exhaust gas temperature vs. Furnace outlet temperature

Temperature (K)
Under the conditions of biomass co-firing, the content of unburned carbon in the fly ash is higher:
- The furnace efficiency decreases by about 0.192%, when the biomass quantity increases from 0t/h to 12t/h.
- The furnace efficiency decreases by about 0.524%, when the biomass quantity increases from 0t/h to 24t/h.

Reasons:
- Temperature of biomass feeding; feeding position of biomass.

<table>
<thead>
<tr>
<th>Test conditions</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity of biomass feed (t/h)</td>
<td>0</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Inlet temperature of upper mill (°C)</td>
<td>229</td>
<td>78</td>
<td>83</td>
</tr>
<tr>
<td>Content of unburned carbon in fly ash (%)</td>
<td>0.179</td>
<td>0.474</td>
<td>0.519</td>
</tr>
<tr>
<td>Content of carbon in slag (%)</td>
<td>1.393</td>
<td>1.438</td>
<td>1.269</td>
</tr>
<tr>
<td>Exhaust temperature (°C)</td>
<td>135.5</td>
<td>125.5</td>
<td>133</td>
</tr>
<tr>
<td>Furnace efficiency (%)</td>
<td>94.673</td>
<td>94.481</td>
<td>94.149</td>
</tr>
</tbody>
</table>
(4) Emissions of NOx

- With an increase in the biomass input, the NOx emissions are gradually reduced.
- When the quantity of the biomass feed reaches 24t/h, the NOx emissions have been reduced by about 10%.

Mainly due to much more air is feed from layer F (the same overall air ratio)
(5) Ash availability in cement industry

Key parameters of mortars:
(1) Water demand ratio; (2) Expansion; (3) Flexural strength; (4) Tensile strength at 7 days and 28 days; (5) Activity index.

<table>
<thead>
<tr>
<th>Source of fly ash</th>
<th>None (used as standard)</th>
<th>Condition 0</th>
<th>Condition 1</th>
<th>Condition 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water demand ratio, %</td>
<td>100</td>
<td>91.15</td>
<td>88.50</td>
<td>88.50</td>
</tr>
<tr>
<td>Expansion, mm</td>
<td>0.50</td>
<td>1.25</td>
<td>1.75</td>
<td>1.75</td>
</tr>
<tr>
<td>Flexural strength (7 days), MPa</td>
<td>6.40</td>
<td>4.90</td>
<td>4.95</td>
<td>5.05</td>
</tr>
<tr>
<td>Tensile strength (7 days), MPa</td>
<td>36.70</td>
<td>25.30</td>
<td>23.55</td>
<td>22.30</td>
</tr>
<tr>
<td>Flexural strength (28 days), MPa</td>
<td>8.70</td>
<td>8.95</td>
<td>8.95</td>
<td>8.60</td>
</tr>
<tr>
<td>Tensile strength (28 days), MPa</td>
<td>49.6</td>
<td>39.95</td>
<td>37.95</td>
<td>37.45</td>
</tr>
<tr>
<td>Activity index</td>
<td>100</td>
<td>80.55</td>
<td>76.50</td>
<td>75.50</td>
</tr>
</tbody>
</table>

>75% √
The commercial operating of “XJTU-Bao’er mode”

1. Power plant fostered some fuel suppliers (FSs).
2. The crushed biomass was dried and then briquetted in briquetting station.
3. 0.8-1 t/h, per equipment, moister content <25%.
4. FSs “buy one machine, get one machine”.
5. We have built 19 briquetting stations with 50 briquetting, machines.
6. Year-2011: 10,000 ton biomass were burned.

341 RMB/t = 213 (raw fuel) + 50 (transport) + 78 (process)
4. XJTU-Baishui mode: biomass powder co-firing in a 55 MW PC furnace.

- 100KM: 4.25 million tons.
- 50KM: 1.53 million tons.
- 40-50% is fruit branches.

- Three biomass-fired unit planded.
- None running.
- Enough fuels.
Biomass powder pretreatment
Co-firing experiment (2018.6)

Symbol note:
- CO sampling
- Temperature measure
- Fuel powder sample
- Primary air
- Secondary air
- Tertiary air
Co-firing experiment (2018.6)
Safety of biomass powder milling and storage

CO concentration in milling system (ppm)

- Mill outlet
- Powder storehouse

100% coal: 0 ppm
5% biomass: 0 ppm
10% biomass: 2 ppm
20% biomass: 6 ppm
Safety of biomass powder transport in primary air pipe
Temperatures in storage house and primary air pipe

Temperature in the powder house

Primary air pipes
Particle size distribution, unburned carbon (UBC), and efficiency

<table>
<thead>
<tr>
<th>Cases</th>
<th>Qnet (MJ/kg)</th>
<th>UBC in ash (%)</th>
<th>UBC in slag (%)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure coal</td>
<td>22.67</td>
<td>4.706</td>
<td>11.479</td>
<td>90.88</td>
</tr>
<tr>
<td>5% biomass</td>
<td>22.370</td>
<td>4.676</td>
<td>14.063</td>
<td>90.82</td>
</tr>
<tr>
<td>10% biomass</td>
<td>22.069</td>
<td>5.769</td>
<td>15.960</td>
<td>90.09</td>
</tr>
<tr>
<td>20% biomass</td>
<td>21.468</td>
<td>5.161</td>
<td>15.992</td>
<td>90.11</td>
</tr>
</tbody>
</table>
NOx emission and De-NOx efficiency

- NOx emission
- De-NOx efficiency
Economic analysis for 2×55 MW unit

- One-time investment: 3,350,000 RMB
 - Field storing biomass 1,900,000 RMB
 - Controlled transport and weight system 450,000 RMB
 - Powder machine 1,000,000 RMB

- Fuel price (15 MJ/kg): 397 RMB/ton (can be lower)
 - Raw fuel 350 RMB/ton
 - Electricity 10 RMB/ton
 - Labor 25 RMB/ton
 - Depreciation 12 RMB/ton

- Low sulfur coal price (21.8MJ/kg): 510 RMB/ton
- High sulfur coal price (18.9MJ/kg): 300 RMB/ton
- Cost reduction in De-NOx and De-SOx
5. Summary

1. Biomass co-firing is promptly developed in China.
2. “Biomass gasification coupling co-firing” is under demo-stage, and there are concerning problems in technical and economics.
3. Biomass direct co-firing in PC power plants: (1) “Shiliquan”, (2) “XJTU-Bao’er” and (3) “XJTU-baishui”.
4. Direct co-firing:
 - Approved safety of system and powder transport system.
 - Slight decrease in efficiency, because of moisture and primary air temperature.
 - Lower NOx emission and higher De-NOx efficiency.
 - Ash availability in concrete industry.
5. Economic analysis: biomass direct co-firing can be competitive at a comparatively higher coal price, like now.