

A sustainable path With Pogramme 2016 convert volatile fatty a 2007 coming from fermented food waste into bio-based solvents

FRAMEWORK PROGRAMME FOR RESEARCH AND INNOVA

2020

HORIZ

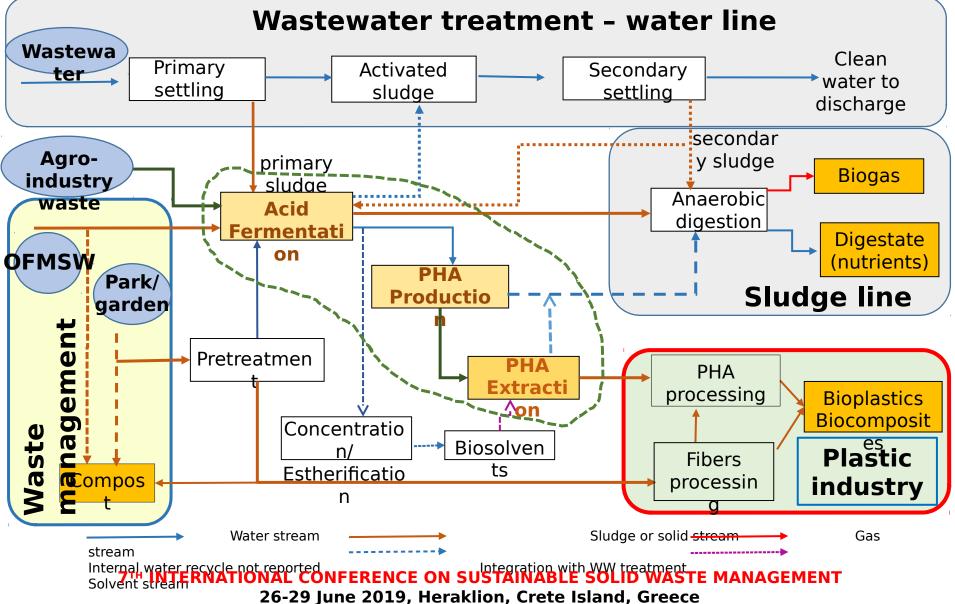
L. di Bitonto, C. Pastore

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT

26-29 June 2019, Heraklion Crete Island, Greece

Green Biobased-Chemicals

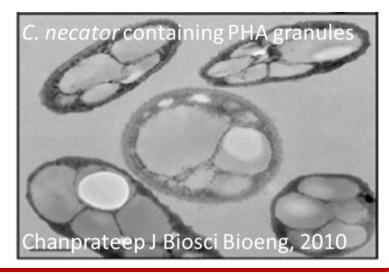
Ethyl esters of VFAs


RCOOEt

 $R = -CH_3, -CH_2CH_3, -CH_2CH_2CH_3$

Linking the urban biowaste biorefinery with existing waste/wastewater treatment facilities and

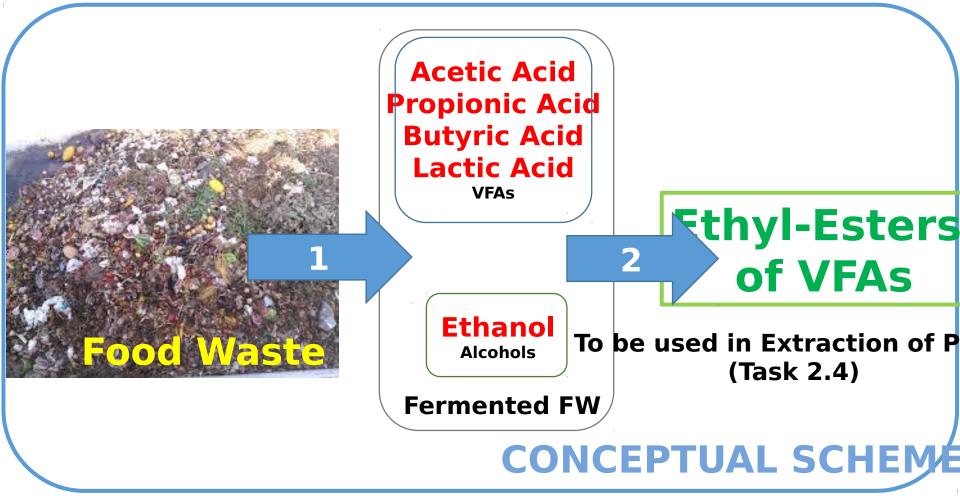
with plastic industry



FROM URBAN BIO-WASTE

- the organic fraction from separate collection of municipal solid waste (55 g TS/d from OFN 3 w)
- excess sludge from treatment of urban wastewater (39 g TS /d from WWS), with possible further integration with wastewater treatment (water line)
- garden and parks waste
- possibly, some waste from food-processing facilities (to be selected, based on similar composition)

TO BIO-BASED PRODUCTS


- polyhydroxyalkanoate (PHA), a biodegradable natural biopolymer
- related PHA-based bioplastics (e.g through blends)
- fibers (to be also used for PHAbased biocomposites).
- bio-based solvents (to be also

Green Biobased-Solvents

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT

26-29 June 2019, Heraklion, Crete Island, Greece

State of the art of production of Ethyl Esters of VFAs

RCOOH + EtOH	← cat RCOOEt + H,O

R = CH ₃ ; CH ₃ CH ₂ ; CH ₃ CH ₂ CH ₂ ture of Catalysts Mineral Acids (homogeneous and heterogenised Cationic Resins Zeolites Metal Oxides Metal phosphates and or sulphate Enzymes (free and supported) onic Liquids	In the case of Acetic Acid Molar ratio RCOOH:EtOH of 1:1, T in the range (310-350 K), NO co-solvents Final equilibrium yields does not exceed 70%mol in Ethyl Acetate			
	 Technical solutions adopted to improve EE yields: Use of molar excess of reactants (EtOH) Physical removal of Water (Special reactors, Distillative column, reactive column, etc.) Chemical Removal of water (chemical traps, zeolites, etc.) 			

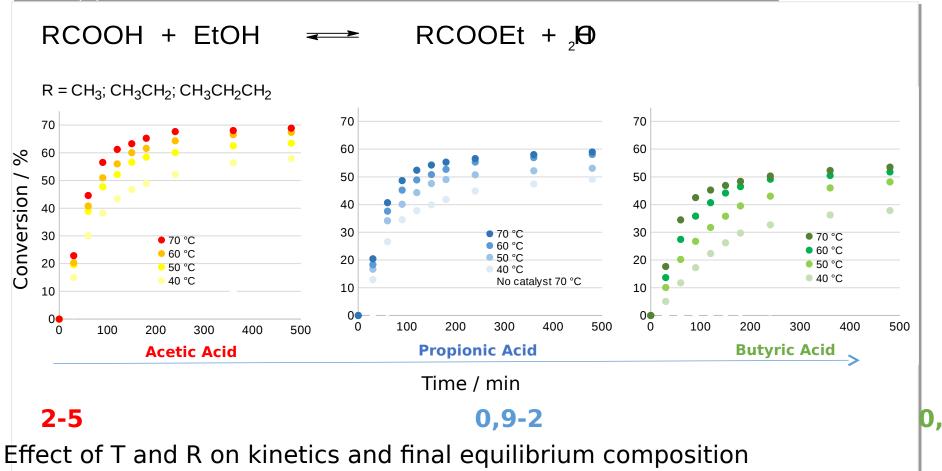
Production of Ethyl-Esters of VFAS: Drawbacks

cat RCOOH + EtOH → RCOOEt + H₂O

 $R = CH_3$; CH_3CH_2 ; $CH_3CH_2CH_2$

- Unfavourable Thermodynamics (low final yields and Acids Conversion) The use of classic homogeneous mineral acids as catalysts (H₂SO₄, HCl, p-toluen sulphonic acid, etc.) has the following relevant drawbacks:
- Highly Corrosive;
- Not-easily recoverable from final mixture
- Production of a final waste (salt)

- High-Energy demanding procedure (azeotropic distillation) for the Recovery of Ethyl-Esters from the resulting mixture


di Bitonto, L., Pastore, C. (2019) Renewable Energy, 143, pp. 1193-1200 **Res Urbis** approach: di Bitonto et al. (2016) Renewable Energy, 90, pp. 55-61 AICI, 6H, O was tested as a caster of the (2015) Applied Catalysis A: General, 501, pp.

Pastore et al. (2014) Biores Technol, 155, pp. 91-98

Production of Ethyl-Esters of VFA: preliminary investigation on pure organic acids (1)

Production of Ethyl-Esters of VFA: preliminary investigation on pure organic acids (2)

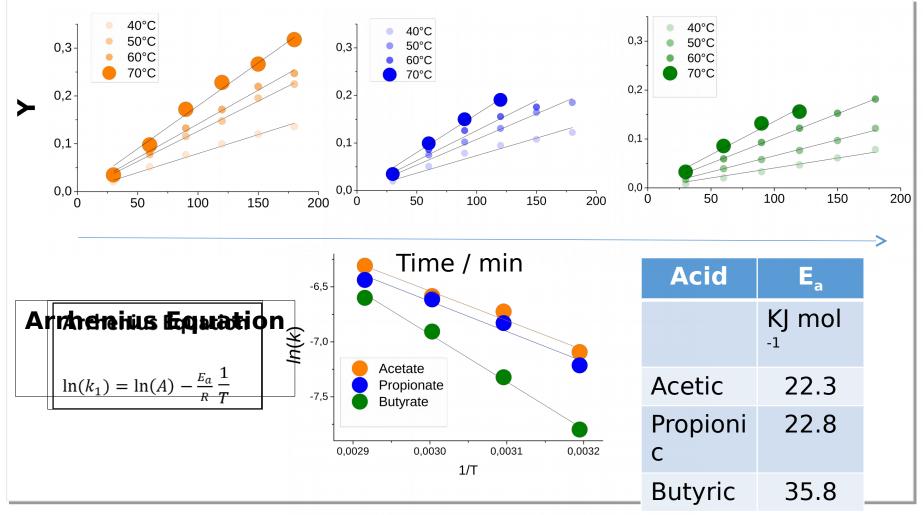
RCOOH + EtOH → RCOOEt + ,⊕

 $\mathsf{R}=\mathsf{CH}_3; \mathsf{CH}_3\mathsf{CH}_2; \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2$

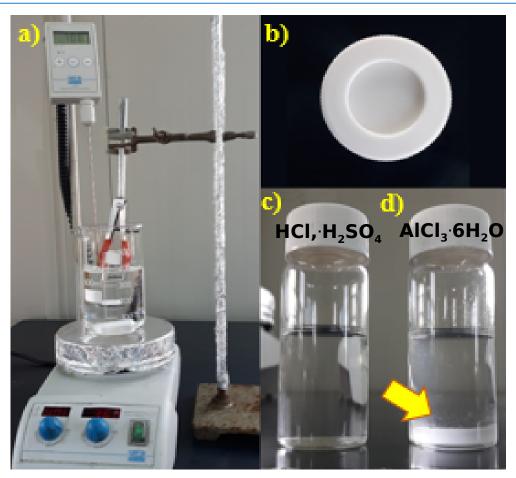
Homogeneous second order model is applicable

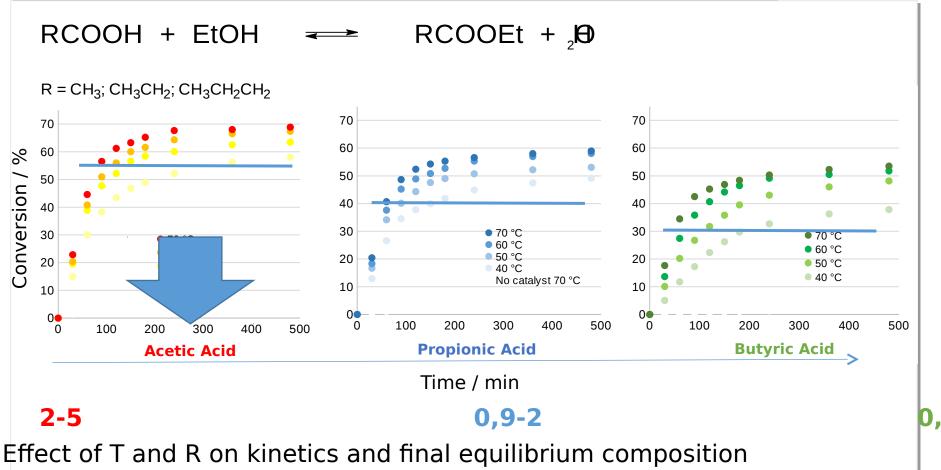
$$v = \frac{d[RCOOH]}{dt} = k_1([RCOOH][EtOH] - \frac{[RCOOEt][H_2O]}{K_{eq}}$$

In the case of a molar ratio RCOOH:ROH=1:1*


$$Y = \frac{1}{2\left(\frac{1}{X_{eq}} - 1\right)[RCOOH]_{t0}} \ln\left[\frac{X_{eq} - (2X_{eq} - 1)X_t}{X_{eq} - X_t}\right] = k_1 t$$

In which X_{eq} , X_t , $[RCOOH]_{to}$ and k_1 represent respectively the Acid conversion at the equilibrium, at the *t* time, starting molar concentration of the organic acid and the kinetic constant for the forward reaction. *Altıokka & Çıtak, Applied Catalysis A: General 239 (2003) 141-14

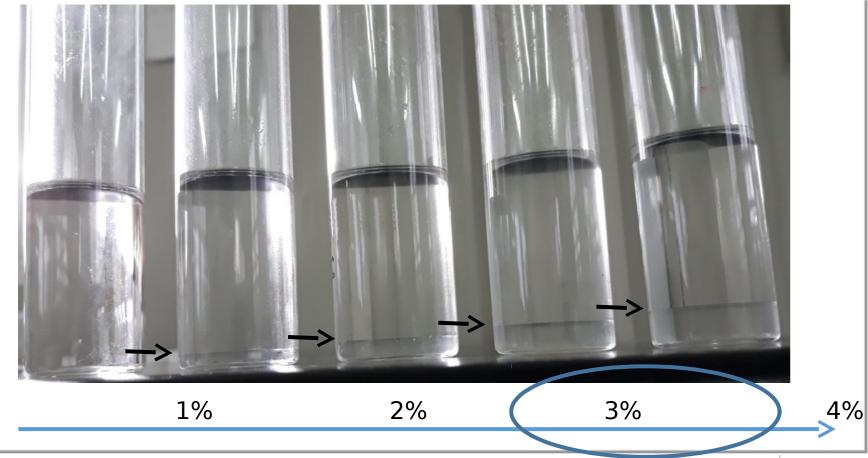

Production of Ethyl Esters of VFA: preliminary investigation on pure organic acids (3)


Intensification of the process: optimization of operative conditions in order to improve the production and the simultaneous separation of products

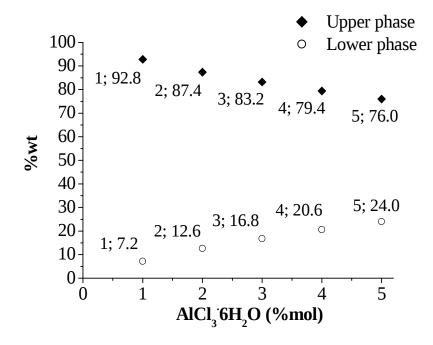
Production of Ethyl-Esters of VFA: preliminary investigation on pure organic acids (5)

Intensification of the process: Effect of the amount of catalyst on the phase behaviour (1)

1. Synthetic solution with EtOH, AcOH, AcOEt and $\rm H_2O$ in their equilibrium composition is perfectly homogeneous


2. Addition to this solution of conventional mineral Acids did not produce any change

0



Intensification of the process: Effect of the amount of catalyst on the phase behaviour (2)

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT 26-29 June 2019, Heraklion, Crete Island, Greece

Intensification of the process: Effect of the amount of catalyst on the phase behaviour (3)

With the increase of the catalyst, the reaction became fast and the bottom aqueous phase increased.

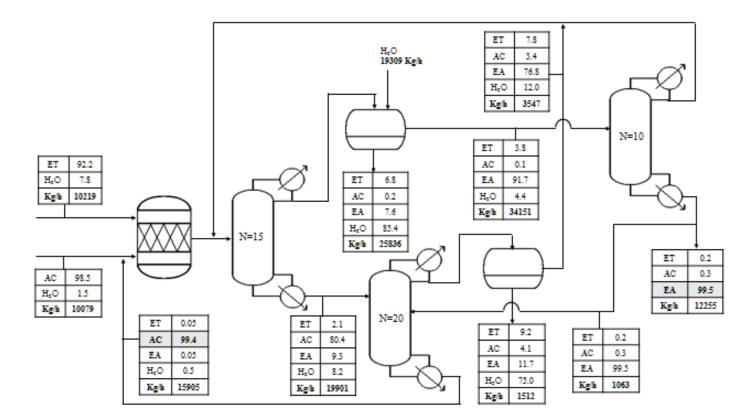
Distribution of components between the two phases

		T. MOLE LI					
	Catalyst load	1%m	2%m	3%m	4%m	5%mol	Ethyl Ace
		ol	ol oper ph	ol	ol		always di
		-					
	Acetic acid			95.6			recovered
	(%wt)	98.8	96.7		95.0	92.3	organic la
	Ethanol (%wt)	95.4	92.8	88.8	87.4	86.7	
	Ethyl acetate			99.3			2.95-97%
	(%wt)	99.7	99.5		99.1	98.9	
	Water (%wt)	62.0	39.9	25.9	11.5	1.4	$AICl_{3} \cdot 6H_{2}C$
	AICl ₃ ·6H ₂ O						dissolved
	(%wt)	16.5	5.6	3.3	2.2	1.2	aqueous
			aqaeeae				
	Acetic acid						
	(%wt)	1.2	3.3	4.4	5.0	7.7	3. Higher amount o
	Ethanol (%wt)	4.6	7.2	11.2	12.6	13.3	
	Ethyl acetate						catalyst,
	(%wt)	0.3	0.5	0.7	0.9	1.1	amount o
_	Water (%wt)	38.0	60.1	74.1	88.5	98.6	
	AICl ₃ ·6H ₂ O						the organ
	(%wt)	83.5	94.4	96.7	97.8	98.8	and, Greece

1. More than 99% of Ethyl Acetate were always dissolved and recovered into the organic layer

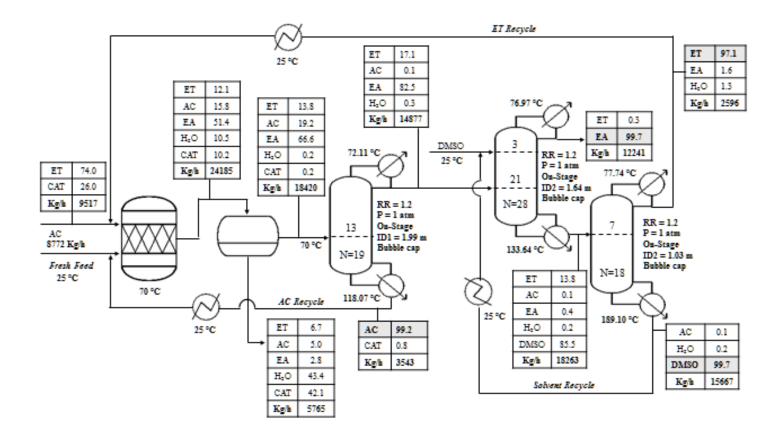
2.95-97% of AICl₃·6H₂O was dissolved in the aqueous phase

3. Higher was the amount of of the catalyst, less was the amount of water into the organic layer


Advantages

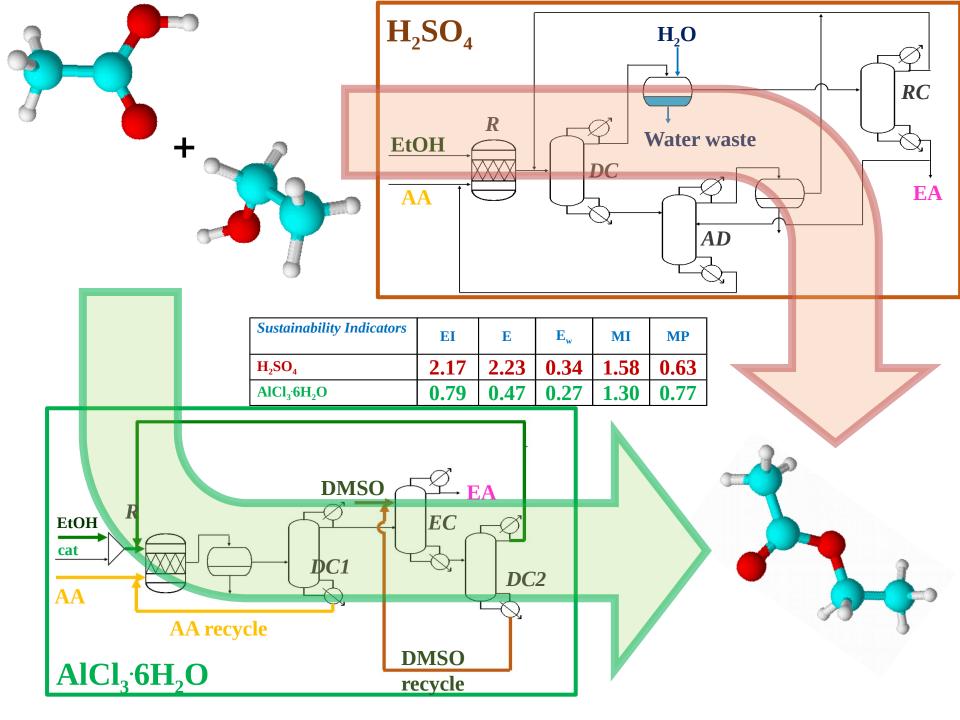
Simulation of an industrial production of Ethyl Acetate through $AlCl_3 \cdot 6H_2O$ catalysis and comparison with the present industrial process based on H_2SO_4 catalysis: evaluation of productivity, recovery, profitability, Sheldon Factor and Energy Intensity.

Simulation of an industrial production of Ethyl Acetate through H₂SO₄ catalysis



M.A. Santaella et al. / Chemical Engineering and Processing 96 (2015) 1–13

Simulation of an industrial production of Ethyl Acetate under AlCl₃ 6H₂O catalysis



Comparison of processes: evaluation of productivity, recovery, profitability, Sheldon Factor and Energy Intensity

Conversion(X) =
$$\frac{\text{moles of HAC Converted}}{\text{moles of HAC Fed}}$$
mass Intesity(MI) = $\frac{\text{Total mass fed (kg) - Water (kg)}}{\text{mass of product (kg)}}$ Recovery(Rc) = $\frac{\text{moles of EtAc in product Stream}}{\text{moles of HAC Converted}}$ Mass productivity(MP) = $\frac{1}{\text{MI}} \times 100$ Productivity(P) = X × Rc = $\frac{\text{moles of EtAc in product Stream}}{\text{moles of HAC Fed}}$ Energy intensity(EI) = $\frac{\text{Energy used(W)}}{\text{mass of product (kg)}}$ $E = \frac{\text{Total waste streams (kg)}}{\text{mass of product (kg)}}$ $E_W = \frac{\text{Total waste streams (kg) - Water in waste streams(kg)}}{\text{mass of product (kg)}}$

Conclusions

- 1. Thermodynamic (K_{eq}) and kinetic parameters $(k_1 \text{ and } E_a)$ for direct esterification of VFAs and Ethanol mediated by aluminum hydrated salts (study on pure reagents)
- 2. Intensification of the process: operative conditions in order to promote the production and the simultaneous separation of products
- 3. The effect of different concentration of catalyst (AlCl₃· $6H_2O$) was evaluated on kinetics and on final separability of phases
- 4. Different EtOH:VFAs molar ratio was studied for acetic, propionic and butyric acids
- 5. The effect of the use of azeotropic-ethanol was evaluated on the equilibrium
- 6. Simulation of an industrial production of Ethyl Acetate through $AlCl_3 \cdot 6H_2O$ catalysis and comparison with the present industrial process based on H_2SO_4 catalysis: evaluation of productivity, recovery, profitability, Sheldon Factor and Energy Intensity.

Acknowledgements

Financial support by EU Horizon 2020 Programme under Grant Agreement 730349

nk you for your kind attent

Please visit our internet site:

http://www.resurbis.eu/