and macronutrients & on soil fertility, in comparison to the common & recommended inorganic fertilization

E. Samara, T. Matsi, N. Barbayiannis, A.S. Lithourgidis

Introduction

- Application of organic fertilizers instead of inorganic fertilizers
- One of the environmental longterm approaches to sustainable agriculture
- Economically feasible

In Greece:

- Intensive livestock produces a substantial amount of manure
- Production of approximately 80000 Mg of N from 1996 to 2013
- Almost the 30 % of it came from cattle breeding according to FAO

Soil application

Animal Appropriate N

source, supply crops with readily available mineral N

 Also they contain organic N, long term effect on

Field In provement of soil properties

4.0

- Chemical
- Physical
- Biological

Environmen tal impacts

- Application may exceed crop needs
- Water pollution & eutrophication
- NO₃ leaching, P

7th Grief Reported Contraction on Sustainable Solid Waste Management, 26-28 June 2019, Herakling, Areto Free H

Farmers

Slow effect on crop yield & their variability in short time **Nitrogen efficiency** Affected by the liquid or solid fraction **Liquid slurries** Have high N efficiency due to

- Low dry matter
- Low C/N
- High mineral

Studies

Should be performed in medium- and long-term periods Corn & dairy cattle

Two economically important activities

Often related in many agricultural lands

Objectives

Investigation of:

- The effects of liquid dairy cattle manure on corn:
 - Yield
 - Macronutrients' content & uptake
- In comparison to:
 - Common &
- Evaluation ended inorganic fertilization
- The effect of manure application on soil:
 - Fertility (available macronutrients)
 - Chemical properties

- The size of the plots was almost 48 $$\rm m^2$$
- The experimental design was a randomized complete block design (RCBD), with 4 fertilization treatments, replicated 6 times
- i. Manure: 80 Mg ha⁻¹ y⁻¹ (wet weight)
- N: 250 kg ha⁻¹ y⁻¹ P: 55 kg ha⁻¹ y⁻¹ K: 200 kg ha⁻¹ y⁻¹ II. Common Inorganic Fertilization: N: 260 kg ha⁻¹ y⁻¹ P: 57 kg ha⁻¹ y⁻¹
- iii. Recommended Inorganic

Fertilization:

7th International Conference on Sustainable Solid Waste Management, 26-28 June 2019, Heraklion, -Crete, Greece

Experiment

Field of the Farm of Aristotle University of Thessaloniki, Greece

During the years of 2009-2013

Field background

Soil & plant sampling & analysis

Results & Discussion

Fig1. Dry aboveground biomass yield of corn at the R3 growth stage, the years of $_{28,3}^{29,2}$ 009-2013

Effect of liquid dairy cattle manure on corn yield, nutrient content & uptake

Fig2. Grain yield of corn at harvest, the years of 2009-2013

Macronutrients	' uptake by corn	plants at the R3	growth stage
----------------	------------------	------------------	--------------

		•	-	-	
			Year		
Treatment	2009	2010	2011	2012	2013
			N (kg ha-1)		
Manure	291a	200a	177ab	188a	206ab
Common IF	254b	196a	134bc	186a	235a
Recommende d IF	276ab	201a	183a	191a	172b
Control	126c	100b	131c	103b	93c
			P (kg ha ⁻¹)		
Manure	27a	37a	30a	43a	44a
Common IF	27a	31ab	29a	39a	43a
Recommende d IF	30a	32ab	31a	46a	34b
Control	18b	25b	11b	23b	21c

Macronutrients' uptake by corn plants at the R3 growth stage (continued)					
	Year				
Treatment	2009	2010	2011	2012	2013
	K (kg ha-1)				
Manure	170b	206a	157a	127a	108a
Common IF	133bc	94b	163a	118b	113a
Recommended	236a	178a	170a	129a	100a
Control	91c	104b	55b	74c	58b

Effect of liquid dairy cattle manure on soil properties

Total

Ν

рΗ

EC_{se}

- Range 7.9-8.5
- Remained unchanged
- Range 0.35-0.97 •
- Lower than 2 dS m⁻¹
- Significant increase in certain years

OC

- But it was not consistent during the whole period
- OC range 7.6-11.2 g kg⁻¹
- Total N range 0.84-1.24 g kg⁻¹

 No significant differences

C/N

• Range 7.1-12.7

Soil available m	acronutrients	s', the years o	of 2009-2013			
	Year					
Treatment	2009	2010	2011	2012	2013	
	NO ₃ -N (mg kg ⁻¹)					
Manure	14.1a	9.4a	9.3ab	24.0a	22./a	
Common IF	L1.2bc	8.2ab	7.8bc	26.3a	22.7a	
Recommended IF	L3.0ab	8.0ab	10.9a	23.8a	19.0b	
Control	9.8c	7.1b	7.2c	19.0b	15.6c	
	Olsen-P (mg kg ⁻¹)					
Manure	10.5a	<u>39.2a</u>	27.3a	37.1 a	<u>35.4a</u>	
Common IF	7 8h	14.6h	9 Sh	17 8h	22.8h	
Recommended IF	8.5b	10.7c	10.5b	10.6c	10.0c	
Control	4.9b	5.1d	3.8c	9.7c	8.5c	

Soil available macronutrients', the years of 2009-2013 (continued)					
	Year				
Treatment	2009	2010	2011	2012	2013
	Exchangeable K (mg kg ⁻¹)				
Manure	95.2a	130.0a	145.7a	165.3a	172.3a
Common IF	61.5b	88.8b	84.7c	89.2c	132.5b
Recommended IF	63.5b	98.7ab	116.8b	128.0b	146.8al
Control	65.5b	73.6b	80.3c	92.2c	130.7b

Conclusions

Repeated annual applications of liquid cattle manure into soil, at rates comparable (regarding N) to the common or recommended inorganic

- Enhance crop yield and macronutrients' uptake, at levels higher or similar than the inorganic fertilization
- Maintain soil fertility with the increase of soil available NO_3 -N, P & K
- Attention should be given in the case of N & P, because of the possible loss of NO₃-N by leaching and of P by run-off

Thank you for your attention !!!