# ELECTRO-ASSISTED EXTRACTION OF CRITICAL RAW MATERIALS FROM COAL ASH

<sup>1</sup>CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal <sup>2</sup>Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA 18015, USA







HERAKLION 2019 - 7th International Conference on Sustainable Solid Waste Management, 29th June 2019, Crete Island, Greece

# **Rare Earth Elements (REEs)**





# **REEs applications**

FCCE FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE NOVA DE LISBOA



#### Chart by netl.doe.gov

# Problem

### **EU overview**



- EU is almost entirely dependent upon imports from China
- The 2011 REE-price crisis pointed to the need to reduce the dependence on China's imports
  1
- Substitution Index\*\*: 0.96 (HREE) & 0.90 (LREE)
- End of life recycling rate: 8% (HREE) & 3% (LREE)

120,000 oxide 100,000 earth 80,000 rare 60,000 Metric tons 40,000 20,000 0 2015 2016 1995 2012 2013 2014 1994 966 2001 2002 2003 2004 2005 2007 2008 2009 2010 2011 766 866 666 2000 2006 Australia ited Sta Source: Geology.com using data from the

**REE Production** 

\*\* 0 - 1: 1 means non-substitutable

1 EU, 2017

# **Geopolitical strategy**





Final List of 35 Minerals deemed critical to U.S. National Security and Economy



List of Critical Raw Materials for the EU – 27 CRMs 2017 September (European Commission)

2011 Critical Materials Strategy - by the U.S. Department of Energy - includes criticality assessments:

> Supply challenges for 5 REE may affect clean energy technology deployment in the years ahead.





(Based on the US Dept. of Energy, 2011)





### Recovery of REEs from a **secondary resource** (e.g. coal by-product) through electro-based technologies

Efficient & environmentally-friendly separation and processing technology

#### In progress:

- Assessment and analysis of the feasibility of electrodialytic recover of REEs from anthracite ash
- Proof of concept

### Electrodialytic Process

Recover of REEs from fine anthracite coal ash under the influence of an applied low level direct current



Matrix compartment: anode

# Anthracite origin



- Blaschak Coal Corporation, Centralia, PA, USA
- Northern Pennsylvania
  - Lat. 40.8° N, Long. 76.36° W
- Mammoth Vein



# Methodology







Anthrac ite



Anthracite ash ASTM (D3174-12)



Electrodialyti c cell



Fluxi ng

### Characterization

**Relative REE content in anthracite ash** 





# Characterization

Particle morphology of anthracite ash



- Disperse
- Angular
- Size range: 1 to 10 um



SEM microphotograph of anthracite ash

## Characterization

**Particle morphology of anthracite ash** 



ull Scale 1026 cts Cursor: 10.208 (0 cts)



### Trace elements

- Carbon
- Oxygen
- Aluminum
- Silicone
- Phosphorus
- Titanium
- Iron

### REEs

- Lanthanum
- Neodymium
- Cerium

SEM microphotographs and respective EDS spectra of a) REE particle; b) agglutination of minerals

6

5

### pH desorption from anthracite ash



FACULDADE DE CIÊNCIAS E TECNOLOGIA

pН



- 2C-ED cell
- L/S = 115

lacksquare

 ${\color{black}\bullet}$ 

 ${\color{black}\bullet}$ 

lacksquare



Cathode (eq.)  $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ 

Ferreira et al. 2019, Water Air & Soil Pollution, 230(4): 78-88.



### Results

### **REEs criticality analysis of relative content after ED**





## Conclusions



# ED process is a promising extraction technique for rare earth elements recover from coal ash



REE desorption improved with the ED process

LREE show higher desorption rates

HREE show promising capabilities of passing through the CEM

| Critical<br>REEs | Relative % of REEs<br>desorped by ED |
|------------------|--------------------------------------|
| Tb               | 14.4                                 |
| Eu               | 13.5                                 |
| Nd               | 12.0                                 |
| Dy               | 5.4                                  |
| Y                | 4.9                                  |





- Blaschak Coal Corporation, 2019. Representative analysis Lattimer mammoth vein. Accessed in June 2019 http://www.blaschakcoal.com/wp-content/uploads/Lattimer-Mammoth-Vein-Rep-Analysis.pdf
- European Commission, 2017. (COM(2017) 490) 'on the 2017 list of Critical Raw Materials for the EU' 2017.
- Ferreira, A.R.; Couto, N.; Ribeiro, A.B.; Ottosen, L.M. 2019. Electrodialytic arsenic removal from bulk and pre-treated soil. 2019, Electrodialytic arsenic removal from bulk and pre-treated soil. *Water Air & Soil Pollution*, **230**(4):78-88.
- NETL National Energy Technology Laboratory. REE Program. Accessed in June 2019, https://netl.doe.gov/coal/rare-earth-elements/program-overview/background
- REE Rare Earth Elements and their Uses. Accessed in June 2019, https://geology.com/articles/rare-earth-elements/
- US DoE, 2011. Critical Materials Strategy report. US Department of Energy

### Acknowledgements













This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 778045, and from FCT/MEC through grant UID/AMB/04085/2019 to the Research unit CENSE – Center for Environmental and Sustainability Research. N. Couto also acknowledges FCT Investigator Contract CEECIND/04210/2017.

### **pH** desorption **LREE**









### LREE

- Stable complexes are the first to desorp
  - Higher desorption rates compared to HREE

### **Tendency**

- Desorption starts from lower to higher atomic number (i.e. inversely related with ionic radius)

#### Scandium

Different electronic and magnetic properties

### **Results** Relative distribution of REEs in the ash





Critical Near critical Other REE

### Results









### Results

### **REE in the catholyte after ED**





# **Future Work**





المطالب والطرم