

Start-up Of The First Pilot Plant For Short-Cut Enhanced Phosphorus And PHA Recovery From Real Sieved Wastewater

<u>Nicola Frison</u>¹, Vincenzo Conca¹, Cinzia da Ros¹, Anna Laura Eusebi², Francesco Fatone²

1University of Verona, Department of Biotechnology

2Polytechnic University of Marche, Department of Materials, Environmental and City Planning Science and Engineering

OUTLINE

- The world needs new resources...from wastewater;
- The water industry consumes about 1% of the overall electricity (Caldwell, 2009; 2° Eur Water and Wastewater Conf);
- Activated sludge is the major energy consumer (ca 55% of the energy use);
- The water factory concept of the future: «Not Dissipate» but «Upgrade» low cost carbon source into high added value bioproducts (IWA Resource Recovery Cluster, 2016).

UNIVERSITĂ

National Induication Harbornets ef Athenes HORIZON 2020 – SMART-PLANT PROJECT HERAKLION2019 Ì Heat WATER \bigcirc Electricity Treated <u>~</u>} wastewater Wastewater CHEMICALS / PROCESSING ଦ୍ୟୁ hud Ammonum sulphate Schematic view of SMART-Plant Model Phosphorus Nitrogen Å3 Market segments Struvite Organic <u> </u> \Box rban Water Utlities compounds <u> </u> Efficient Cellulose \subseteq Phosphorus Additives rich biosolids SMART-Plant biocomposite \Box Agrics Bioplastics Benefits from recovery of resources Chemical /Processing \Box Companies NNN Supported by

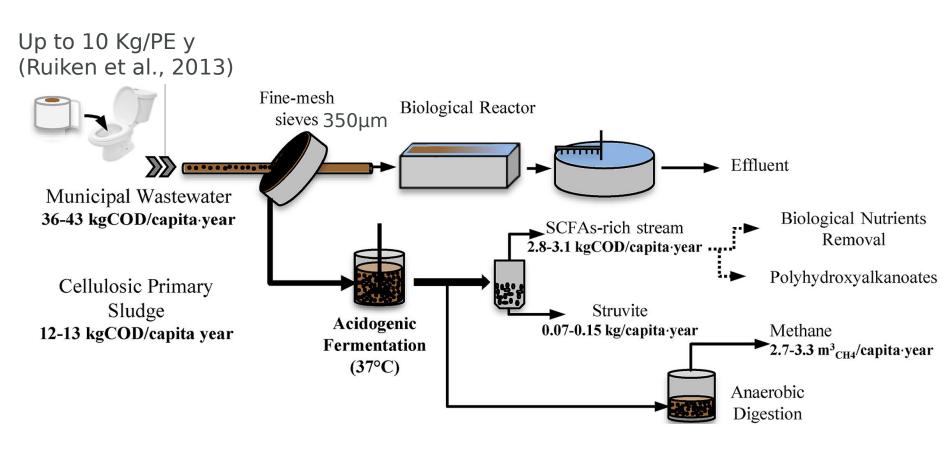
the Horizon 2020 Framework Programme

of the European Union

UNIVERSITÀ

POLITECNICA

DELLE MARCHE


inspiring chapped

UNIVERSITÀ

di **VERONA**

SMART-Plan

BIOREFINERY OF CELLULOSIC PRIMARY SLUDGE (CPS)

Crutchik et al., 2018

Kristel Kri

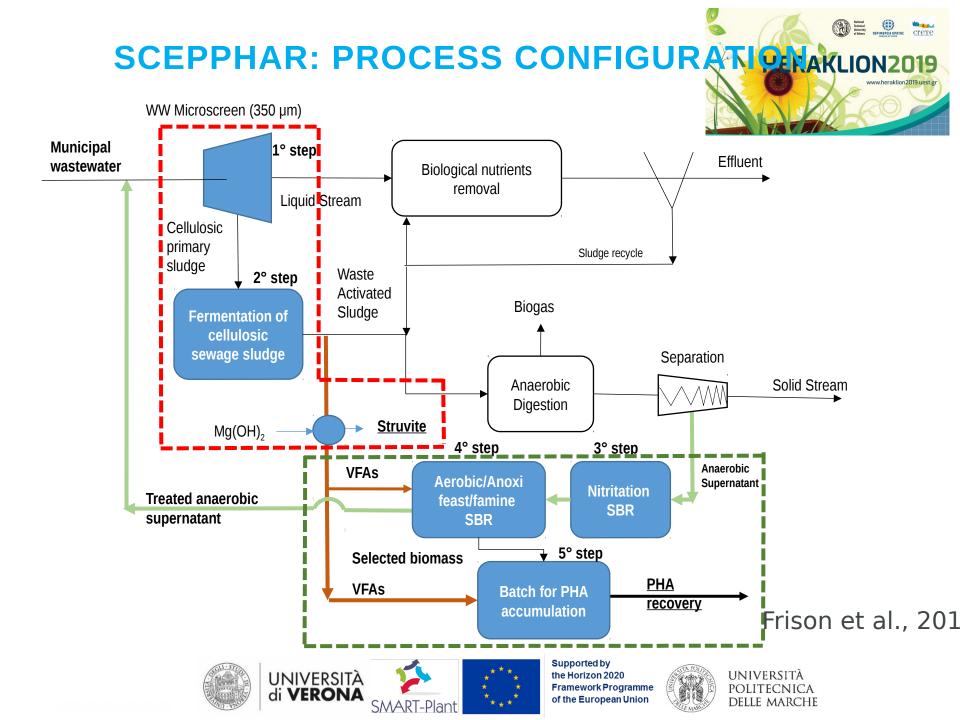
HERAKLION2

Supported by the Horizon 2020 Framework Programme of the European Union

UNIVERSITÀ Politecnica Delle Marche

OBJECTIVE

- Recovery of cellulosic primary sludge (CPS) through dynamic rotating belt filter;
- Start-up and operation of the Short-cut Enhanced Phosphorus and PHA recovery pilot plant at the Carbonera WWTP (owned by Alto Trevigiano Servizi Srl)
- Selection of PHA storing bacteria during the via-nitrite nitrogen removal from anaerobic supernatant (aerobic feast and anoxic famine);
- Mass balance around the system and recovered (organics) resources



ROTATING BELT FILTER FOR CELLULOS C HERAKLION2019 PRIMARY SLUDGE (CPS) RECOVERY

Fine mesh size: 350 µm

Rational Industrial Industrial Interesting IEPIGEDELIA EDI

Wastewater Flowrate: 29-40 m³/h

Fixed surface contact area: 0,24 m²

Variable belt rotation speed

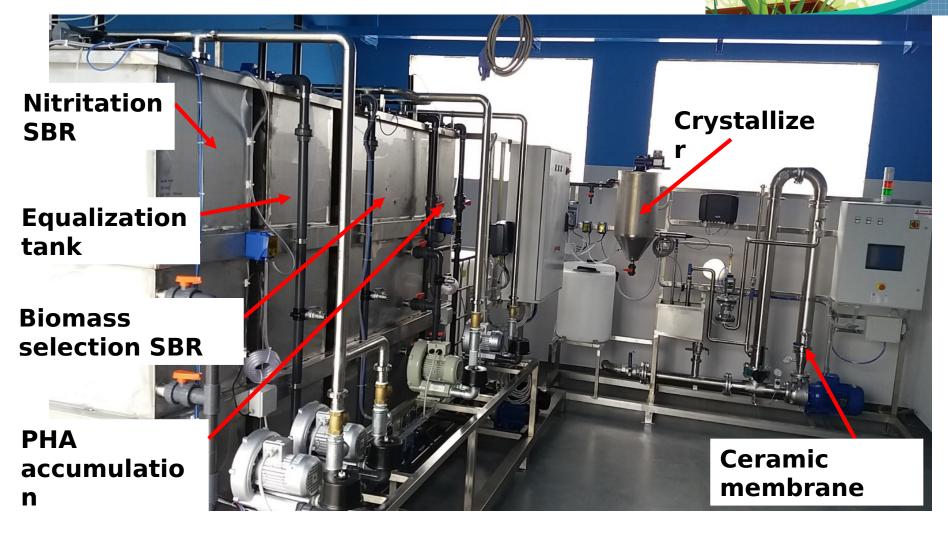
Average TSS removal = 45-50%

Supported by the Horizon 2020 Framework Programme of the European Union

UNIVERSITÀ Politecnica delle marche

FERMENTATION UNIT FOR SCFAS PRODUCTION FROM CPS

- Volume: 3.0 m³
- Operating Temperature: 37°C
- HRT: 4-5 days
- Probe for the monitoring of the influent TSS concentration


Supported by the Horizon 2020 Framework Programme of the European Union

UNIVERSITÀ

POLITECNICA

SHORT-CUT ENHANCED PHOSPHORUS AND PHA RECOVERY (SCEPPHAR)

Supported by the Horizon 2020 Framework Programme of the European Union

UNIVERSITÀ Politecnica Delle Marche Katiseal Icohical University REPIGEDEDIA EDITOR CLETCE

HERAKLION2019

CHARACTERISTICS OF THE FERMENTATION LIQUID

Parameter	Unit	Average	Min	Max
рН	-	4,9	4,8	5,0
VFAs	mgCOD/L	17467	13993	23564
NH ₄ -N	mgN/L	283	252	307
PO ₄ -P	mgP/L	68	44	82

- Observed VFAs yield around 0.40 mgCOD/gVSS_{fed}
- COD:N:P ratio in the liquid fraction ~ 257:4:1
- HPr to HAc ratio >2 (<u>PHBV</u>)
- Phosphorus (and fraction of ammonia) recovered as P salts forms.

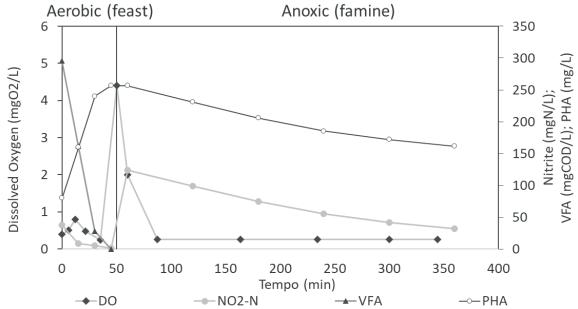
Supported by the Horizon 2020 Framework Programme of the European Union

UNIVERSITÀ

POLITECNICA

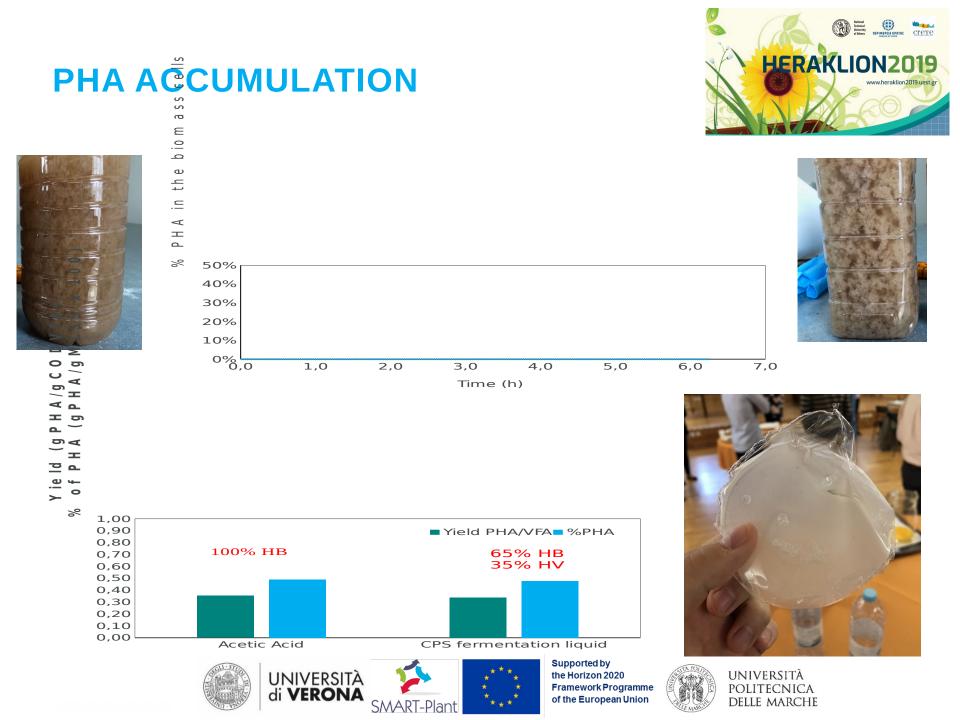
NITRITATION SBR

- Run 1: not heated; Period 2: heated
- In Run 2 the vNLR was increased up to 1,55-1,60 kgN/m³ day (T = 28°C);
- In Period 3 the observed nitritation rate was 55-60 mgN/L h, 80-90% of the nitrogen was nitrified;

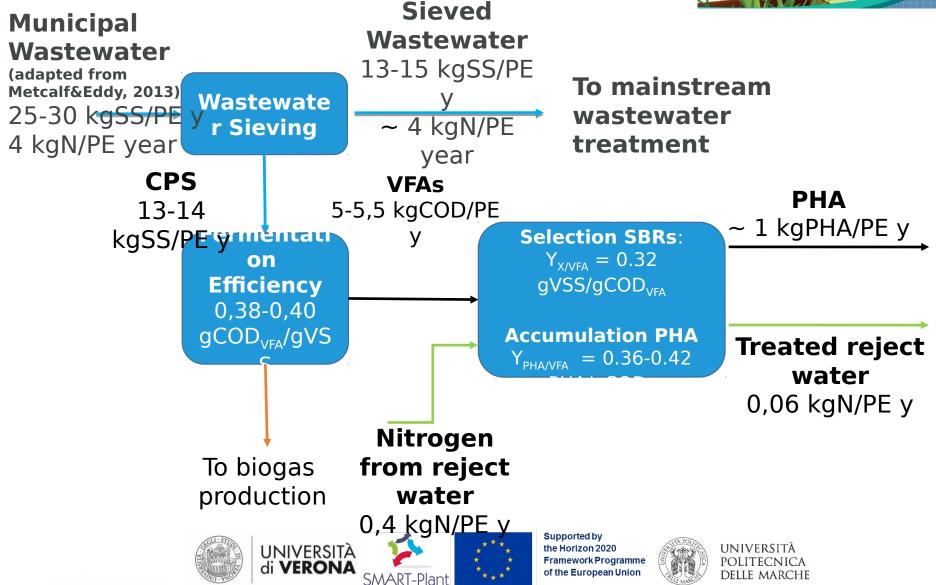


SELECTION SBR

- Nitrite removal efficiency around 85%;
- The kd (@20°C) was 8-10 mgN/gVSS h (driven by PHA degradation);
- Feast/Famine ratio was 0,15 0,20 min/min



Supported by the Horizon 2020 Framework Programme of the European Union

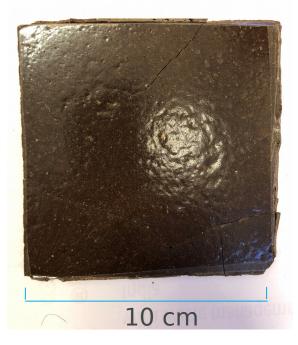


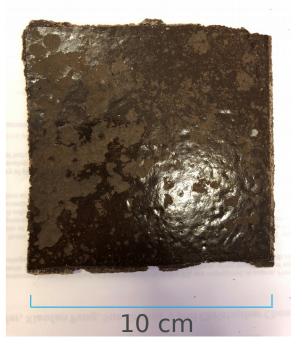
UNIVERSITÀ Politecnica Delle Marche

MASS BALANCE AROUND THE SYSTEM

- Extraction recovery efficiency: 75%
- Purity of the extracted PHA: 90-95% without extensive polishing
- Extraction with «Green-Chemicals » : <u>1,2 Euro/kgPHA extracted</u> (currently very affected by the scale of the process)
- SDS-Sodium hypochlorite: <u>0,29 Euro/kgPHA extracted (adapted from</u> CalRecycle, 2013)

Courtesy of Biotrend SA (Portugal)




Supported by the Horizon 2020 Framework Programme of the European Union

FIRST BIOCOMPOSITES FROM RAW PHA- HERAKLION2019 ACCUMULATED BIOMASS

Rational Indexical University

Dried accumulated PHA Biomass (105°C for 24 h) DriedDriedaccumulated PHAaccumulated PHABiomass + 20%Biomass + 20% ofof PHBVBiomass + 20% ofCourtesy of Yonghui Zhou, University ofCourtesy of Yonghui Zhou, University ofImage: Supported byImage: Support

Supported by the Horizon 2020 Framework Programme of the European Union

CONCLUSIONS

- Cellulosic primary sludge is suitable for the production of VFAs (0,40 gCOD_{VFA}/gVSS);
- The SCEPPHAR system allows the integration of the PHA production from sewage sludge with the nitrogen removal via-nitrite from the reject water through the <u>aerobic-feast and anoxic-famine</u> regime;
- The nitrogen removal efficiency was around 85%;
- Observed PHA production was around 1 kgPHA/PE y. The productivity will be validated during the two years of Smart-Plant Project.

UNIVERSITĂ

Thank you for your attention!

<u>Nicola Frison</u>¹, Vincenzo Conca¹, Cinzia da Ros¹, Anna Laura Eusebi², Francesco Fatone²

¹University of Verona, Department of Biotechnology ²Polytechnic University of Marche, Department of Materials, Environmental and City Planning Science and Engineering

