

UNIVERSITY OF THRACE

DEMOCRITUS UNIVERSITY OF THRACE DEPARTMENT OF ENVIRONMENTAL ENGINEERING

Laboratory of Wastewater Management and Treatment Technologies

ANAEROBIC CO-DIGESTION OF OLEIC ACID AND WHEY PROTEIN: THE ROLE OF EMULSIFICATION

A. Eftaxias, C. Michailidis, V. Diamantis, A. Aivasidis

mail: <u>alexeftaxias@gmail.com</u>, <u>bdiamant@env.duth.gr</u>

Heraklion, June 2019

Anaerobic digestion of FOG

- Fats, Oils and Grease (FOG) are preferred co-substrate for Anaerobic Digestion.
- High theoretical biomethane yield $(1m_3 CH_4 kg^{-1})$.
- FOG is a desirable substrate to enhance biomethane production.

Oleic acid

- Oleic acid is the most widespread unsaturated fatty acid in nature.
- It is suitable for biogas production.
- Is often responsible for process inhibition, due its high toxicity even at low concentrations.
- In this study, anaerobic co-digestion of oleic acid and whey protein was examined in continuous (batch-fed) stirred tank reactors.

Anaerobic Digesters Design &

igester type	CSTR
igester olume	2L
emperature	Mesophilic ~ 38 °C
ixing elocity	100 rpm
eeding type	Fed – batch (daily)
LSS	$10.2 \pm 2.5 \text{ g/L}$
H4-N	$2.5 \pm 0.2 \text{ g/L}$
icro- utrients	Eftaxias et al.

Preparation of proteinaceous solution

• 20gr/L whey protein• High shear 6000rpm

• Pre-heated at 75°C

Preparation of both mixtures

Emulsified mixture with oleic acid

 Mixing 5g/L of oleic acid when proteinaceous solution was performed. No emulsified mixture with oleic acid

 The proteinaceus solution and oleic acid were added separately into the digester

Waste Characteristics

Emulsified

10,0

No-emulsified 10,0 --OLR (g/Ld) -BPR (L/Ld) ---Foam ---Foam 9,0 8,0 7,0

Emulsified

No-emulsified

Parameter	Unit	Value
FOG	%	62.7
Protein	%	6.8
NVS	%	18.6

Emulsified

No-emulsified

Results – Maximum uptake rate for degrading LCFA

• Emulsified (km_fa = 6ka/kad)

• No-emulsified (km_fa = 1.41ka/kad)

m3.d-1

Conclusions

- ➢The results of this study demonstrate the importance of emulsification pre-treatment for high-rate anaerobic treatment of oleic acid based effluents.
- ➢Without emulsification procedure the anaerobic digestion of oleic acid was unstable, presenting high foaming incidents and severe accumulation.
- ➢Oleic acid solubility plays a critical role on the anaerobic digestion process.
- Maximum uptake rate for LCFA degrading microorganisms (km_fa) base on ADM1 modelling was 6 kg/kgd and 1.41 kg/kd for emulsified and non emulsified oleic acid respectively.

Acknowledgements

The research was supported by the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI).

Thank you