

Recovery of Sewage Sludge Incinerator Ash by Geopolymerization

B. Yigit, <u>G. Salihoglu*</u>, A. Mardani-Aghabaglou, S. Kilic, N.K. Salihoglu, S. Ozen

Department of Environmental Engineering, Bursa Uludağ University, Bursa, 16059, TURKEY 7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT, 28-29 Department of Civil Engineering, Bursa, Uludağ University, Bursa,

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT, 28-29 June 2019, Crete Island

Sludge Generation & Incineration

Increasing population & Increasing amount of sludge

Incineration: gained attention as a common disposal method

«Nothing vanishes, everything transforms»

Gas (Er

vai

าร)

Liquid (Water

Solid (ASH)

Volume of the sludge decreases, ashes are generated.

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT, 28-29 June 2019, Crete

Island

Incineration Plant & Sludge Ashes

Fluidized bed incinerator of Bursa

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT, 28-29 June 2019, Crete

Objective of the Study

To develop a recovery strategy for the sewage sludge incinerator ashes

Geopolymers

Cementitious materials that do not require the presence of cement to harden 3d network of Si & Al mineral molecules linked through covalent bonds with oxygen Synthetic alkalialuminosilicate material Physical & chemical properties comparable to cementitious binders

7TH INTERNATIONAL CONFERENTION CULOS NABLE SOLID WASTE MANAGEMENT, 28-29 June 2010 ders

Geopolymers

Alumino-silicate source

Source

- Ground granulated blast furnace slag
- Silica fume
- Coal combustion fly ash

Alkali

 Alkalis and alkaline activators, e.g. NaOH, KOH, sodium/potassium silicates Geopolymer paste Siddge incinerator Siddge incinerator fly ash was used as fly ash was used as geopolymer geopolymer precursor in this precursor in this study.

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT

Materials and Methods

emical composition of the materials

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT, 28-29 June 2019, Cret Island

Heavy metal leaching from the sludge ash (EN12457)

 Parameter	mg/L	
Silver (Ag)	< 0.003	
Aluminum (Al)	0.053	hing was
Arsenic (As)	< 0.012	Leaching the
Boron (B)	0.030	lower that
Cadmium (Cd)	<0.003	limits:
Total	1.629	Hazarde
Chromium (Cr)		Waste Maste
Copper (Cu)	< 0.003	
Total Ferrous	< 0.004	
(Fe)		
Manganese	<0.005	
(Mn)		
Nickel (Ni)	<0.005	
Lead (Pb)	< 0.012	
Antimony (Sb)	0.018	
Tin (Sn)	< 0.009	
Zinc (Zn)	0.052	
Selenium (Se)	0.026	

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT, 28-29 June 2019, Crete Isl

Content of the samples prepared

Samples without cement

Samples with cement

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT, 28-29 June 2019, Crete Isla

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT, 28-29 June 2019, Crete Island

Unconfined Compressive Strength, MPa

CEM: Portland cement, SA: sludge ash, FA: fly ash, MS:

marble sludge al conference on sustainable solid waste management, 28-29 June 2019, Crete

Unconfined Compressive Strength, Mpa

without cement

Conclusions

- Combined influence of sludge ash, fly ash, and marble sludge was positive although the influence of sludge ash alone was negative.
- UCS of SA+FA+MS = 40.56 MPa

 Heavy metals leaching confirmed that sludge ash does not possess any toxicity leeaching.

Sludge incinerator fly ashes have the potential to be used as a supplementary cementitious material in geopolymerization.

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID V

04

03

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT, 28-29 June 2019, Crete Island

References

- 1. Khale, D., Chaudhary, R.: Mechanism of geopolymerization and factors influencing its development: a review. J Mater Sci **42**(3), 729-746 (2007). doi:10.1007/s10853-006-0401-4
- 2. Komnitsas, K., Zaharaki, D.: Geopolymerisation: A review and prospects for the minerals industry. Miner Eng **20**(14), 1261-1277 (2007). doi:10.1016/j.mineng.2007.07.011
- 3. Davidovits, J.: Geopolymers Inorganic Polymeric New Materials. J Therm Anal **37**(8), 1633-1656 (1991). doi:Doi 10.1007/Bf01912193 4. Davidovits, J.: Geopolymer chemistry and applications. 2nd ed. 16 rue Galilee, 02100 Saint Quentin, France: Institute Geopolymere.. (2008).
- 5. Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J Mater Sci **42**(9), 2917-2933 (2007). doi:10.1007/s10853-006-0637-z
- 6. Duxson, P., Provis, J.L., Lukey, G.C., Van Deventer, J.S.J.: The role of inorganic polymer technology in the development of 'green concrete'. Cement Concrete Res **37**(12), 1590-1597 (2007). doi:10.1016/j.cemconres.2007.08.018
- 7. Toniolo, N., Boccaccini, A.R.: Fly ash-based geopolymers containing added silicate waste. A review. Ceramics International **43**, 14545-14551 (2017).
- 8. Lynn, C.J., Dhir, R.K., Ghataora, G.S., West, R.P.: Sewage sludge ash characteristics and potential for use in concrete. Constr Build Mater **98**, 767-779 (2015). doi:10.1016/j.conbuildmat.2015.08.122
- 9. Monzo, J., Paya, J., Borrachero, M.V., Corcoles, A.: Use of sewage sludge ash(SSA)-cement admixtures in mortars. Cement Concrete Res **26**(9), 1389-1398 (1996). doi:Doi 10.1016/0008-8846(96)00119-6
- 10. Monzo, J., Paya, J., Borrachero, M.V., Girbes, I.: Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars. Waste Management **23**(4), 373-381 (2003). doi:10.1016/S0956-053x(03)00034-5
- 11. Chen, C.H., Chiou, I.J., Wang, K.S.: Sintering effect on cement bonded sewage sludge ash. Cement Concrete Comp **28**(1), 26-32 (2006). doi:10.1016/j.cemconcomp.2005.09.003
- 12. Chen, M.Z., Denise, B., Mathieu, G., Jacques, M., Remy, G.: Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction. Waste Management **33**(5), 1268-1275 (2013). doi:10.1016/j.wasman.2013.01.004
- 13. Lin, K.L., Chiang, K.Y., Lin, C.Y.: Hydration characteristics of waste sludge ash that is reused in eco-cement clinkers. Cement Concrete Res **35**(6), 1074-1081 (2005). doi:10.1016/j.cemconres.2004.11.014
- 14. Smol, M., Kulczycka, J., Henclik, A., Gorazda, K., Wzorek, Z.: The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. Journal of Cleaner Production **95**, 45-54 (2015). doi:10.1016/j.jclepro.2015.02.051
- 15. Wang, K.S., Chiou, I.J., Chen, C.H., Wang, D.: Lightweight properties and pore structure of foamed material made from sewage sludge ash. Constr Build Mater **19**(8), 627-633 (2005), doi:10.1016/j.conbuildmat.2005.01.002
- 16. Wiebusch, B., Seyfried, C.F.: Utilization of sewage sludge ashes in the brick and tile industry. Water Sci Technol **36**(11), 251-258 (1997).