

Strategies for the minimization of highly polluted effluents and secondary raw material procurement to achieve a circular economy in fish canning industry 1 July 2016 - 31 Dec 2019

PREVENTION AND INTEGRATED MANAGEMENT OF HIGH POLLUTED EFFLUENTS FROM FOOD SMEs TO URBAN SANITATION SYSTEMS

PROJECT LOCATION: Basque Country

BUDGET:

PARTNERS

Total: 1,958,998 €

% EC Co-FINANCED: 56.02

DURACION: July 2016 – December 2019

Environmental Issue

The high percentage of the industrial sewage from fish canning industry in the urban WWTP.

Main characteristics or the sewage:

-High Organic load -High salinity load -Discharged loads

Objective:

Demonstration of an integrated solution (technical, legislative and environmental) for reduction at the origin and the controlled integration of high organic and saline load discharges from the SME's canning industry in the urban sanitation system.

Inclusive aspect:

It brings together all the agents involved in the problem in order to reach an integral solution jointly:

- Fish canning industries
- Water management entities
- Administrations

Safe discharges, life source

Solutions proposed:

• Eco-efficient and Clean production Plan implementation, providing low-cost innovative solutions.

• Implementation of **Real Time Control**

System (RTC) in the sanitation network for the remote and intelligent management of different discharges, urban and industrial, based on the modelling of:

Colector Network

Demonstration of the project: Artibai Area

Levels of LIFE VERTALIM Project performance

Level 1_ Tuna canning industry

Strategies for the minimization of highly polluted effluents and secondary raw material

Develop and model a virtual simulation platform integrating industrial pretreatments, collector network and WWTP

Level 2_ Sewerage system

Monitoring the impact of the project actions on the environment

Level 1_Tuna canning india ation of discharges

at source

Objective: Minimize discharges in each company (20-40%) to reduce their impact on the sanitation system, through actions to improve eco-efficiency in the selected industry

1) H 🖉 🐘

HERAKLION2019

States I and

vert**alim**

Safe discharges, life source

Level 1_Tuna canning industry

Pollution of

General Results:

- → Sewage load
- → High fats and grease content
- → High salinity
- → High temperature

Level 1_Tuna canning industry zation of discharges at source

Indicators

Environmental Aspect	Units		Ratio	BREF Recomendations
Raw material yield	Baser matasinal yield	House House House 43-565 35-708 10-17 10-17 9-13 240-532 150-250 0-0-05 0.5-0-669 10-14 5-12 Ratio BREF Recommendations	43-50 %	35-70%
Water Consumption	$\label{eq:constraint} \begin{array}{c} & \mbox{Distribution} \\ & \mbox{Water Consumption} \\ & \mbox{Every Consumption} \\ & \mbox{Every Consumption} \\ & \mbox{By-products} \\ & \mbox{By-products} \\ & \mbox{By-products} \\ & \mbox{Sewage} \\ & \mbox{every Sewage} \\ & \mbox{Every Constraint} \\ & \mbox{Every Constraint} \\ & \mbox{Every Constraint} \\ & \mbox{Every Sewage} \\ & \mbox{Every Sewage} \\ & \mbox{Every Constraint} \\ & \mbox{Every Sewage} \\ & \$	IO-17 9-11 240-532 150-250 0.4-0.63 0.5-0.69 10-14 5-12 Ratio BREF Recommendations	10-17	9-11
Energy Consumption	$\label{eq:approximation} \begin{array}{llllllllllllllllllllllllllllllllllll$	43-50% 35-70% 10-17 9-11 240-532 150-250 0.4-0.63 0.5 - 0.69 10-14 5 - 12	240-532	150-250
By-products	Environmental Aspect Units Rew material yield = $\frac{1}{T_{ex}} \frac{1}{T_{ex}} \frac{1}{T_{ex}} \frac{1}{T_{ex}} \frac{1}{T_{ex}}$ Water Consumption = $\frac{1}{T_{ex}} \frac{1}{T_{ex}} \frac{1}{T_{ex}} \frac{1}{T_{ex}}$ Energy Consumption = $\frac{1}{T_{ex}} \frac{1}{T_{ex}} \frac{1}{T_{ex}} \frac{1}{T_{ex}}$ Sewage = $\frac{1}{T_{ex}} \frac{1}{T_{ex}} \frac{1}{T_{ex}} \frac{1}{T_{ex}} \frac{1}{T_{ex}} \frac{1}{T_{ex}}$	Ratio BREF Recommendations 43-50% 33-70% 10-17 9-11 240-532 150-250 0.4.0.63 0.5 - 0.69 10-14 5 - 12	0.4-0.63	0.5 - 0.69
Sewage	Environmental Aspect Units Rear material (releft = International (releft)	Ratio BREF Recommendations 43-504 33-704 10-17 9-11 240-532 150-750 0.4-0.63 0.5 - 0.69 10-14 5 - 12	10-14	5 - 12

Level 1_Tuna canning industry

Water Consumption reduction in productive and auxiliary processes Avoid the loss of raw material and products and its disposal in wastewater

2ª

Recention of solids and food fractions in a hygienic way through specific systems and technologies that allow their recovery

<u>3</u>ª

Intelligent internal management of

partial discharges, through temporary storage, partial treatment, reuse and controlled dosages before being discharged to the final treatment, sanitation network or

aquatic environment.

Examples

Water savings

 Installation of a pass sensor for tuna pieces

Avoid loss of raw material

- Installation of baffles to avoid loss of raw material
- Include dispensers and presence sensors for coverage liquids addition
- Install trays for the hygienic collection of
- Replacement of more efficient diffusers tuna crumbs

Safe discharges, life source

Level 1_Tuna canning industry LUE BY-PRODUCTS:

- Fish Oils with abundant richness of omega-3 acids, therefore, it is an ingredient of high commercial value
- Fish flour are a valuable sources of protein and essential amino acids for animal feed
- 3. Other **wastes** are a source of nitrogen, phosphorus and potassium, which makes them ideal as a supplement for fertilizers
- 4. Soluble protein concentrate for aroma ingredients
- Brine can be reuse with the proper treatment and then avoid its disposal

Example:

Recovery of sterilizer cooling water for internal reuse in floors cleaning or other uses

Level 2_Sewerage

Objective: Develop and model a virtual simulation platform integrating pretreatments at canning, collector network and WWTP. to optimize its operation

Level 3_Environment

Physico-chemical water quality

Study area: Sampling stations for the measurement of different variables in surface water

R-A1R-A3AUTUMN-16WINTER-17SPRING-17SUMMER-17AUTUMN-17WINTER-18SPRING-18SUMMER-18

2 stations in the river: R-A1, R-A3

- 4 stations in the estuary (saline gradient): E-A5, E-A8, E-A10, E-A12 (Sampling at low tide)
- 3 stations in the sea (WWTP discharge area): OND_01, OND_02, OND_03.

Analytical Parameters:

Paramet er	Units	Artiba	i Basin	Estuar y	Coastal zone - WWTP			
		R-A1 Before Canneries	R-A13 After Canneries	E-A8 (Bridge)	OND_02			
T	°C	12.4	12.3	13.6	14.6			
CE	mS/cm	0.30	0.29	7.3	36.8			
Salinity	UPS	0.20	0.20	7.0	34.8			
рH		8.8	8.0	7.6	8.1			
Dissolve d Oxygen	mgO ₂ /l	11.5	9.7	8.9	6.5			
Solids	mg/l	15.5	21.0	17.4	8.2			
Amonium	mgN/l	2.9	19.0	9.7	2.0			
HERAKLION201								

Level 3_Environment LCA - Life Cycle Assessment

Thank you very much for your **attention**

www.azti.es/vertalim/

