

Optimizing mixing time to lower the energy consumption of an anaerobic digestion waste-toenergy system for food waste management

Jingxin ZHANG / Yen Wah TONG China-UK Low Carbon College / Dept of Chemical & Biomolecular Eng Shanghai Jiaotong University / National University of Singapore lcczjx@sjtu.edu.cn / chetyw@nus.edu.sg

© Copyright National University of Singapore. All Rights Reserved.

CHALLENGES AND DEMANDS FOR FOOD WASTE TREATMENT

Chellenges

- Waste sorting
- Sensitive \$
- Energy Intensive
- Low energy recovery

Demands

- High sorting efficiency
 - High treatment capacity
- Low energy consumption
 - Efficient energy recovery

Optimizing mixing in Anaerobic digester ?

OPTIMIZATION OF MIXING TIME IN AD

CFD simulation

Optimizing mixing time

Lower Energy Consumption

FOOD WASTE

Table 1

Characteristics of food waste.

COMPUTATIONAL FLUID DYNAMICS MODELING

STATISTICAL ANALYSIS OF PROCESS PARAMETERS

Components	R1	R2	R3
1-10 days - 0.9 g VS/L/day SMP ^a (ml CH ₄ /gVS/d) pH	377 ± 36 7.3 ± 0.2	387 ± 30 7.2 ± 0.1	262 ± 27 7.1 ± 0.2
COD (mg/L) VFA (mg COD/L) TS (wt %)	712 ± 59 305 ± 29 2.1 ± 0.3	737 ± 39 321 ± 47 2.1 ± 0.2	722 ± 47 307 ± 39 2.0 ± 0.2
11–20 days – 1.8 g VS/L/day SMP ^a (ml CH ₄ /gVS/d) pH COD (mg/L) VFA (mg COD/L) TS (wt %)	$\begin{array}{r} 423 \ \pm \ 40 \\ 7.3 \ \pm \ 0.1 \\ 1223 \ \pm \ 43 \\ 615 \ \pm \ 59 \\ 2.2 \ \pm \ 0.2 \end{array}$	398 ± 33 7.2 ± 0.2 1037 ± 98 587 ± 86 2.2 ± 0.3	270 ± 26 6.2 ± 0.2 1563 ± 102 831 ± 91 2.1 ± 0.3
21–30 days – 2.4 g VS/L/day SMP ^a (ml CH ₄ /gVS/d) pH COD (mg/L) VFA (mg COD/L) TS (wt %)	$\begin{array}{r} 437 \ \pm \ 26 \\ 7.1 \ \pm \ 0.1 \\ 1613 \ \pm \ 109 \\ 1009 \ \pm \ 93 \\ 2.5 \ \pm \ 0.2 \end{array}$	396 ± 27 7.1 ± 0.2 1737 ± 87 1127 ± 129 2.3 ± 0.2	$\begin{array}{r} 89 \ \pm \ 12 \\ 5.6 \ \pm \ 0.2 \\ 4309 \ \pm \ 213 \\ 2890 \ \pm \ 426 \\ 2.4 \ \pm \ 0.4 \end{array}$

Semi-continuous mixing mode is preferred !

^a Values are expressed as mean ± standard deviations.

FOOD WASTE AD SYSTEM

Combined Heat and Power System

Net energy output

ENERGY FLOW CHART

CHP - Combined heat and power unit

ENERGY PERFORMANCE

Net energy output is achieved in semi-continuous mixing mode

REDUCING ENERGY CONSUMPTION

Computational Fluid Dynamics (CFD) modelling for mixing

Semi-continuous mixing strategy

Different Scales of Engine Generator systems

APPLICATIONS IN SINGAPORE

Demonstration of NUS-SJTU in Singapore

Anaerobic digestion waste-to-energy eco-system for food waste in Raffles Hall Canteen

Treatment Capacity: 50-200 kg/day Reactor volume: 1 m³ Location: Opposite Raffles Hall Canteen Output: Electricity, Heat and fertilizer Container: 20 feet

NUS Frontier Phase Canteen

CONCLUSIONS

- Energy consumption for AD systems can be optimized
- Reduction through mixing time and process parameters
- Combination of CFD modeling and experimental validation in pilot-scale systems

ACKNOWLEDGEMENTS

- Collaborators:
- (SJTU) PENG Yinghong, DAI Yanjun, GE Tianshu, WANG Ruzhu
- (NUS) WANG Chi-Hwa, LOH Kai Chee, WANG Xiaonan, Adam NG, Michel CARDIN
- Group members: Dr Zhang Jingxin, Dr Li Wangliang, Dr Ingo Wolf, Dr Siddharth Jain, Dr Yan Weicheng, Dr Tong Huanhuan, Dr Lim Jun Wei, Dr Jonathan Lee, Dr Tian Hailin, Mr Mao Liwei, Ms Zhang Jingru, Ms

Guo Yalei, Mr Zhang Le, Mr Lim Ee Yang

THANK YOU!

This programme is funded by the National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise programme.

© Copyright National University of Singapore. All Rights Reserved.